用于精确对称特征值检测的稳健随机指标法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhongyuan Chen, Jiguang Sun, Jianlin Xia
{"title":"用于精确对称特征值检测的稳健随机指标法","authors":"Zhongyuan Chen, Jiguang Sun, Jianlin Xia","doi":"10.1007/s10915-024-02599-x","DOIUrl":null,"url":null,"abstract":"<p>We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices <i>A</i>. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of <i>A</i> are analyzed. In particular, when <i>A</i> has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection\",\"authors\":\"Zhongyuan Chen, Jiguang Sun, Jianlin Xia\",\"doi\":\"10.1007/s10915-024-02599-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices <i>A</i>. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of <i>A</i> are analyzed. In particular, when <i>A</i> has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02599-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02599-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种稳健的随机指标法,用于可靠地检测对称矩阵 A 在区间内的特征值存在性。以往关于特征值指标的研究依赖于根据经验选择的阈值,因此往往会导致检测不足或检测过度。在本文中,我们使用严格的统计分析来指导稳健指标的设计。本文分析了以 A 为单位的轮廓积分算子的多个随机估计器。特别是,当 A 的特征值在给定区间内时,我们证明失败概率(估计器返回极小估计值)极低。因此,我们可以设计一种基于失效概率控制的稳健剔除指标。我们还给出了一个原型框架,说明如何将指标法应用于特征值数值检测,并有可能成为设计随机对称特征值求解器的一种新方法。与以往只检测特征值是否存在的指标法不同,该框架还提供了一种方法,通过重复使用指标评估的计算结果,以很少的额外成本找到特征向量。大量的数值测试表明,特征值检测在多个方面都非常可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection

A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection

We propose a robust randomized indicator method for the reliable detection of eigenvalue existence within an interval for symmetric matrices A. An indicator tells the eigenvalue existence based on some statistical norm estimators for a spectral projector. Previous work on eigenvalue indicators relies on a threshold which is empirically chosen, thus often resulting in under or over detection. In this paper, we use rigorous statistical analysis to guide the design of a robust indicator. Multiple randomized estimators for a contour integral operator in terms of A are analyzed. In particular, when A has eigenvalues inside a given interval, we show that the failure probability (for the estimators to return very small estimates) is extremely low. This enables to design a robust rejection indicator based on the control of the failure probability. We also give a prototype framework to illustrate how the indicator method may be applied numerically for eigenvalue detection and may potentially serve as a new way to design randomized symmetric eigenvalue solvers. Unlike previous indicator methods that only detect eigenvalue existence, the framework also provides a way to find eigenvectors with little extra cost by reusing computations from indicator evaluations. Extensive numerical tests show the reliability of the eigenvalue detection in multiple aspects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信