{"title":"三轴压缩条件下的横向各向同性板岩损伤建模","authors":"Tingting Gu, Tiejun Tao, Jian Jia, Shuai Song, Yuting Zhou, Hongxia Zhao, Xianyang Qiu, Wuquan Duan","doi":"10.1007/s00419-024-02639-w","DOIUrl":null,"url":null,"abstract":"<div><p>Studies of the mechanical response behavior of slate and the establishment of corresponding damage-ontological relationships are crucial for improving safety and avoiding disasters in construction projects. For the study reported in this paper, we first assumed that slate is a transverse isotropic body. Next, to characterize disparities in elastic characteristics between axial and radial orientations, we introduced five distinct elastic parameters for these two directions. Specifically, these parameters were Young’s modulus <i>E</i><sub><i>1</i></sub>, Poisson’s coefficient <i>v</i><sub><i>1</i></sub> (associated with parallel bedding planes), Young’s modulus <i>E</i><sub><i>2</i></sub>, Poisson’s coefficient <i>v</i><sub><i>2</i></sub>, and shear modulus <i>G</i><sub><i>2</i></sub> (associated with perpendicular bedding planes). We then established a statistical damage-evolution equation for transverse isotropic slate based on a lognormal distribution, and we constructed a statistical damage-constitutive model for laminated slate under three-way stress by considering the shear–slip deformation and closure deformation of the laminated surface. Finally, we demonstrated the effectiveness of our model by comparing its output data with results obtained in triaxial compression tests on slate. We found that the differential stress–strain curves obtained from the model and the tests were in good agreement in the peak front. Average relative errors of 15.62% and 16.19% were recorded for cases of 5 Mpa and 10 Mpa of enclosing pressure, respectively. The rationality of the established transverse isotropic slate damage-constitutive relationship was therefore proved.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 8","pages":"2355 - 2368"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse isotropic slate damage modeling under triaxial compression conditions\",\"authors\":\"Tingting Gu, Tiejun Tao, Jian Jia, Shuai Song, Yuting Zhou, Hongxia Zhao, Xianyang Qiu, Wuquan Duan\",\"doi\":\"10.1007/s00419-024-02639-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies of the mechanical response behavior of slate and the establishment of corresponding damage-ontological relationships are crucial for improving safety and avoiding disasters in construction projects. For the study reported in this paper, we first assumed that slate is a transverse isotropic body. Next, to characterize disparities in elastic characteristics between axial and radial orientations, we introduced five distinct elastic parameters for these two directions. Specifically, these parameters were Young’s modulus <i>E</i><sub><i>1</i></sub>, Poisson’s coefficient <i>v</i><sub><i>1</i></sub> (associated with parallel bedding planes), Young’s modulus <i>E</i><sub><i>2</i></sub>, Poisson’s coefficient <i>v</i><sub><i>2</i></sub>, and shear modulus <i>G</i><sub><i>2</i></sub> (associated with perpendicular bedding planes). We then established a statistical damage-evolution equation for transverse isotropic slate based on a lognormal distribution, and we constructed a statistical damage-constitutive model for laminated slate under three-way stress by considering the shear–slip deformation and closure deformation of the laminated surface. Finally, we demonstrated the effectiveness of our model by comparing its output data with results obtained in triaxial compression tests on slate. We found that the differential stress–strain curves obtained from the model and the tests were in good agreement in the peak front. Average relative errors of 15.62% and 16.19% were recorded for cases of 5 Mpa and 10 Mpa of enclosing pressure, respectively. The rationality of the established transverse isotropic slate damage-constitutive relationship was therefore proved.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 8\",\"pages\":\"2355 - 2368\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02639-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02639-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Transverse isotropic slate damage modeling under triaxial compression conditions
Studies of the mechanical response behavior of slate and the establishment of corresponding damage-ontological relationships are crucial for improving safety and avoiding disasters in construction projects. For the study reported in this paper, we first assumed that slate is a transverse isotropic body. Next, to characterize disparities in elastic characteristics between axial and radial orientations, we introduced five distinct elastic parameters for these two directions. Specifically, these parameters were Young’s modulus E1, Poisson’s coefficient v1 (associated with parallel bedding planes), Young’s modulus E2, Poisson’s coefficient v2, and shear modulus G2 (associated with perpendicular bedding planes). We then established a statistical damage-evolution equation for transverse isotropic slate based on a lognormal distribution, and we constructed a statistical damage-constitutive model for laminated slate under three-way stress by considering the shear–slip deformation and closure deformation of the laminated surface. Finally, we demonstrated the effectiveness of our model by comparing its output data with results obtained in triaxial compression tests on slate. We found that the differential stress–strain curves obtained from the model and the tests were in good agreement in the peak front. Average relative errors of 15.62% and 16.19% were recorded for cases of 5 Mpa and 10 Mpa of enclosing pressure, respectively. The rationality of the established transverse isotropic slate damage-constitutive relationship was therefore proved.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.