非局部量子关联的相对论一致性

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-06-27 DOI:10.3390/e26070548
Christian Beck, Dustin Lazarovici
{"title":"非局部量子关联的相对论一致性","authors":"Christian Beck, Dustin Lazarovici","doi":"10.3390/e26070548","DOIUrl":null,"url":null,"abstract":"What guarantees the “peaceful coexistence” of quantum nonlocality and special relativity? The tension arises because entanglement leads to locally inexplicable correlations between distant events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic consistency condition that is weaker than Bell locality but stronger than the no-signaling condition meant to exclude superluminal communication. While justifications for the no-signaling condition often rely on anthropocentric arguments, relativistic consistency is simply the requirement that joint outcome distributions for spacelike separated measurements (or measurement-like processes) must be independent of their temporal order. This is necessary to obtain consistent statistical predictions across different Lorentz frames. We first consider ideal quantum measurements, derive the relevant consistency condition on the level of probability distributions, and show that it implies no-signaling (but not vice versa). We then extend the results to general quantum operations and derive corresponding operator conditions. This will allow us to clarify the relationships between relativistic consistency, no-signaling, and local commutativity. We argue that relativistic consistency is the basic physical principle that ensures the compatibility of quantum statistics and relativistic spacetime structure, while no-signaling and local commutativity can be justified on this basis.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic Consistency of Nonlocal Quantum Correlations\",\"authors\":\"Christian Beck, Dustin Lazarovici\",\"doi\":\"10.3390/e26070548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What guarantees the “peaceful coexistence” of quantum nonlocality and special relativity? The tension arises because entanglement leads to locally inexplicable correlations between distant events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic consistency condition that is weaker than Bell locality but stronger than the no-signaling condition meant to exclude superluminal communication. While justifications for the no-signaling condition often rely on anthropocentric arguments, relativistic consistency is simply the requirement that joint outcome distributions for spacelike separated measurements (or measurement-like processes) must be independent of their temporal order. This is necessary to obtain consistent statistical predictions across different Lorentz frames. We first consider ideal quantum measurements, derive the relevant consistency condition on the level of probability distributions, and show that it implies no-signaling (but not vice versa). We then extend the results to general quantum operations and derive corresponding operator conditions. This will allow us to clarify the relationships between relativistic consistency, no-signaling, and local commutativity. We argue that relativistic consistency is the basic physical principle that ensures the compatibility of quantum statistics and relativistic spacetime structure, while no-signaling and local commutativity can be justified on this basis.\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26070548\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26070548","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

是什么保证了量子非位置性与狭义相对论的 "和平共处"?产生矛盾的原因是纠缠会导致遥远事件之间产生无法解释的局部相关性,而这种相关性在相对论时空中没有绝对的时间顺序。本文确定了一个相对论一致性条件,它弱于贝尔位置性,但强于旨在排除超光速通信的无信号条件。无信号条件的理由通常依赖于人类中心论的论据,而相对论一致性只是要求类似空间的分离测量(或类似测量过程)的联合结果分布必须与它们的时间顺序无关。这是在不同洛伦兹框架下获得一致的统计预测所必需的。我们首先考虑理想量子测量,推导出概率分布层面上的相关一致性条件,并证明它意味着无信号(反之亦然)。然后,我们将结果扩展到一般量子操作,并推导出相应的算子条件。这将使我们能够澄清相对论一致性、无信号和局部交换性之间的关系。我们认为相对论一致性是确保量子统计与相对论时空结构相容的基本物理原理,而无信号性和局部换向性也可以在此基础上得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic Consistency of Nonlocal Quantum Correlations
What guarantees the “peaceful coexistence” of quantum nonlocality and special relativity? The tension arises because entanglement leads to locally inexplicable correlations between distant events that have no absolute temporal order in relativistic spacetime. This paper identifies a relativistic consistency condition that is weaker than Bell locality but stronger than the no-signaling condition meant to exclude superluminal communication. While justifications for the no-signaling condition often rely on anthropocentric arguments, relativistic consistency is simply the requirement that joint outcome distributions for spacelike separated measurements (or measurement-like processes) must be independent of their temporal order. This is necessary to obtain consistent statistical predictions across different Lorentz frames. We first consider ideal quantum measurements, derive the relevant consistency condition on the level of probability distributions, and show that it implies no-signaling (but not vice versa). We then extend the results to general quantum operations and derive corresponding operator conditions. This will allow us to clarify the relationships between relativistic consistency, no-signaling, and local commutativity. We argue that relativistic consistency is the basic physical principle that ensures the compatibility of quantum statistics and relativistic spacetime structure, while no-signaling and local commutativity can be justified on this basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信