{"title":"拉乌奇里定理的一般化","authors":"Nattapon Sonpanow, Pimpen Vejjajiva","doi":"10.1002/malq.202300031","DOIUrl":null,"url":null,"abstract":"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\n <semantics>\n <mi>AC</mi>\n <annotation>$\\mathsf {AC}$</annotation>\n </semantics></math>) that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$(2^{\\textup {fin}(\\mathfrak {m})})^{\\aleph _0} = 2^{\\textup {fin}(\\mathfrak {m})}$</annotation>\n </semantics></math> and, consequently, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>+</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n </mrow>\n <annotation>$2^{2^{\\mathfrak {m}}}+2^{2^{\\mathfrak {m}}} = 2^{2^{\\mathfrak {m}}}$</annotation>\n </semantics></math> for all infinite cardinals <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {fin}(\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>. In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in the latter equation can be replaced by other cardinals which are equal to <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mi>C</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}{\\rm C}$</annotation>\n </semantics></math> but not in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, for example, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>!</mo>\n </mrow>\n <annotation>$\\mathfrak {m}!$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mi>a</mi>\n <mi>r</mi>\n <mi>t</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {Part}(\\mathfrak {m})$</annotation>\n </semantics></math>, the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"173-177"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalisation of Läuchli's lemma\",\"authors\":\"Nattapon Sonpanow, Pimpen Vejjajiva\",\"doi\":\"10.1002/malq.202300031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\\n <semantics>\\n <mi>AC</mi>\\n <annotation>$\\\\mathsf {AC}$</annotation>\\n </semantics></math>) that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>n</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>0</mn>\\n </msub>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>n</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$(2^{\\\\textup {fin}(\\\\mathfrak {m})})^{\\\\aleph _0} = 2^{\\\\textup {fin}(\\\\mathfrak {m})}$</annotation>\\n </semantics></math> and, consequently, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n </msup>\\n <mo>+</mo>\\n <msup>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n </msup>\\n </mrow>\\n <annotation>$2^{2^{\\\\mathfrak {m}}}+2^{2^{\\\\mathfrak {m}}} = 2^{2^{\\\\mathfrak {m}}}$</annotation>\\n </semantics></math> for all infinite cardinals <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>n</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textup {fin}(\\\\mathfrak {m})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n <annotation>$2^{\\\\mathfrak {m}}$</annotation>\\n </semantics></math> are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>. In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n <annotation>$2^{\\\\mathfrak {m}}$</annotation>\\n </semantics></math> in the latter equation can be replaced by other cardinals which are equal to <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n <annotation>$2^{\\\\mathfrak {m}}$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$\\\\mathsf {ZF}{\\\\rm C}$</annotation>\\n </semantics></math> but not in <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>, for example, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>!</mo>\\n </mrow>\\n <annotation>$\\\\mathfrak {m}!$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mi>a</mi>\\n <mi>r</mi>\\n <mi>t</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textup {Part}(\\\\mathfrak {m})$</annotation>\\n </semantics></math>, the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 2\",\"pages\":\"173-177\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
摘要
在没有选择公理()的情况下,莱乌赫利证明了,因此,对于所有无限红心数,其中,和分别是有限子集的红心数和一个红心数为 的集合的幂集的红心数。在这篇文章中,我们给出了莱希里 Lemma 的一个简单形式的概括,从中可以得到一些结果。也就是说,在后一个等式中,可以用等于 in 而不等于 , 的其他红心数来代替,例如,和 , 分别是一个具有红心数的集合的置换集和分割集的红心数。
Läuchli showed in the absence of the Axiom of Choice () that and, consequently, for all infinite cardinals , where and are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality . In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, in the latter equation can be replaced by other cardinals which are equal to in but not in , for example, and , the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality .
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.