拉乌奇里定理的一般化

IF 0.4 4区 数学 Q4 LOGIC
Nattapon Sonpanow, Pimpen Vejjajiva
{"title":"拉乌奇里定理的一般化","authors":"Nattapon Sonpanow,&nbsp;Pimpen Vejjajiva","doi":"10.1002/malq.202300031","DOIUrl":null,"url":null,"abstract":"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\n <semantics>\n <mi>AC</mi>\n <annotation>$\\mathsf {AC}$</annotation>\n </semantics></math>) that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>0</mn>\n </msub>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$(2^{\\textup {fin}(\\mathfrak {m})})^{\\aleph _0} = 2^{\\textup {fin}(\\mathfrak {m})}$</annotation>\n </semantics></math> and, consequently, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>+</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n </msup>\n </mrow>\n <annotation>$2^{2^{\\mathfrak {m}}}+2^{2^{\\mathfrak {m}}} = 2^{2^{\\mathfrak {m}}}$</annotation>\n </semantics></math> for all infinite cardinals <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {fin}(\\mathfrak {m})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>. In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in the latter equation can be replaced by other cardinals which are equal to <span></span><math>\n <semantics>\n <msup>\n <mn>2</mn>\n <mi>m</mi>\n </msup>\n <annotation>$2^{\\mathfrak {m}}$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>ZF</mi>\n <mi>C</mi>\n </mrow>\n <annotation>$\\mathsf {ZF}{\\rm C}$</annotation>\n </semantics></math> but not in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>, for example, <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>!</mo>\n </mrow>\n <annotation>$\\mathfrak {m}!$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mi>a</mi>\n <mi>r</mi>\n <mi>t</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textup {Part}(\\mathfrak {m})$</annotation>\n </semantics></math>, the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"173-177"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalisation of Läuchli's lemma\",\"authors\":\"Nattapon Sonpanow,&nbsp;Pimpen Vejjajiva\",\"doi\":\"10.1002/malq.202300031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Läuchli showed in the absence of the Axiom of Choice (<span></span><math>\\n <semantics>\\n <mi>AC</mi>\\n <annotation>$\\\\mathsf {AC}$</annotation>\\n </semantics></math>) that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>n</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>0</mn>\\n </msub>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>n</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$(2^{\\\\textup {fin}(\\\\mathfrak {m})})^{\\\\aleph _0} = 2^{\\\\textup {fin}(\\\\mathfrak {m})}$</annotation>\\n </semantics></math> and, consequently, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n </msup>\\n <mo>+</mo>\\n <msup>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n </msup>\\n </mrow>\\n <annotation>$2^{2^{\\\\mathfrak {m}}}+2^{2^{\\\\mathfrak {m}}} = 2^{2^{\\\\mathfrak {m}}}$</annotation>\\n </semantics></math> for all infinite cardinals <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mi>i</mi>\\n <mi>n</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textup {fin}(\\\\mathfrak {m})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n <annotation>$2^{\\\\mathfrak {m}}$</annotation>\\n </semantics></math> are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>. In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n <annotation>$2^{\\\\mathfrak {m}}$</annotation>\\n </semantics></math> in the latter equation can be replaced by other cardinals which are equal to <span></span><math>\\n <semantics>\\n <msup>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msup>\\n <annotation>$2^{\\\\mathfrak {m}}$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ZF</mi>\\n <mi>C</mi>\\n </mrow>\\n <annotation>$\\\\mathsf {ZF}{\\\\rm C}$</annotation>\\n </semantics></math> but not in <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathsf {ZF}$</annotation>\\n </semantics></math>, for example, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>!</mo>\\n </mrow>\\n <annotation>$\\\\mathfrak {m}!$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mi>a</mi>\\n <mi>r</mi>\\n <mi>t</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textup {Part}(\\\\mathfrak {m})$</annotation>\\n </semantics></math>, the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 2\",\"pages\":\"173-177\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在没有选择公理()的情况下,莱乌赫利证明了,因此,对于所有无限红心数,其中,和分别是有限子集的红心数和一个红心数为 的集合的幂集的红心数。在这篇文章中,我们给出了莱希里 Lemma 的一个简单形式的概括,从中可以得到一些结果。也就是说,在后一个等式中,可以用等于 in 而不等于 , 的其他红心数来代替,例如,和 , 分别是一个具有红心数的集合的置换集和分割集的红心数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalisation of Läuchli's lemma

Läuchli showed in the absence of the Axiom of Choice ( AC $\mathsf {AC}$ ) that ( 2 f i n ( m ) ) 0 = 2 f i n ( m ) $(2^{\textup {fin}(\mathfrak {m})})^{\aleph _0} = 2^{\textup {fin}(\mathfrak {m})}$ and, consequently, 2 2 m + 2 2 m = 2 2 m $2^{2^{\mathfrak {m}}}+2^{2^{\mathfrak {m}}} = 2^{2^{\mathfrak {m}}}$ for all infinite cardinals m $\mathfrak {m}$ , where f i n ( m ) $\textup {fin}(\mathfrak {m})$ and 2 m $2^{\mathfrak {m}}$ are the cardinalities of the set of finite subsets and the power set, respectively, of a set which is of cardinality m $\mathfrak {m}$ . In this article, we give a generalisation of a simple form of Läuchli's lemma from which several results can be obtained. That is, 2 m $2^{\mathfrak {m}}$ in the latter equation can be replaced by other cardinals which are equal to 2 m $2^{\mathfrak {m}}$ in ZF C $\mathsf {ZF}{\rm C}$ but not in ZF $\mathsf {ZF}$ , for example, m ! $\mathfrak {m}!$ and P a r t ( m ) $\textup {Part}(\mathfrak {m})$ , the cardinalities of the set of permutations and the set of partitions, respectively, of a set which is of cardinality m $\mathfrak {m}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信