Alexandra Kjuchukova, Allison Miller, Arunima Ray, Sümeyra Sakallı
{"title":"定4-芒形中的切分结","authors":"Alexandra Kjuchukova, Allison Miller, Arunima Ray, Sümeyra Sakallı","doi":"10.1090/tran/9151","DOIUrl":null,"url":null,"abstract":"<p>We study the <italic><inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number</italic> of knots, i.e. the smallest <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m\\geq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that a knot <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K subset-of-or-equal-to upper S cubed\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K\\subseteq S^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bounds a properly embedded, null-homologous disk in a punctured connected sum <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis number-sign Superscript m Baseline double-struck upper C double-struck upper P squared right-parenthesis Superscript times\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi mathvariant=\"normal\">#</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>×</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\#^m\\mathbb {CP}^2)^{\\times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We find knots for which the smooth and topological <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number of a knot in terms of its double branched cover and an upper bound on the topological <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C double-struck upper P squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number in terms of the Seifert form.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slicing knots in definite 4-manifolds\",\"authors\":\"Alexandra Kjuchukova, Allison Miller, Arunima Ray, Sümeyra Sakallı\",\"doi\":\"10.1090/tran/9151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the <italic><inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number</italic> of knots, i.e. the smallest <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"m greater-than-or-equal-to 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">m\\\\geq 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that a knot <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper K subset-of-or-equal-to upper S cubed\\\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>⊆</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">K\\\\subseteq S^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bounds a properly embedded, null-homologous disk in a punctured connected sum <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis number-sign Superscript m Baseline double-struck upper C double-struck upper P squared right-parenthesis Superscript times\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi mathvariant=\\\"normal\\\">#</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>×</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\#^m\\\\mathbb {CP}^2)^{\\\\times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We find knots for which the smooth and topological <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number of a knot in terms of its double branched cover and an upper bound on the topological <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C double-struck upper P squared\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi> <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {CP}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-slicing number in terms of the Seifert form.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9151\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9151","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了结的 C P 2 \mathbb {CP}^2 -切片数,即最小的 m ≥ 0 m\geq 0,使得结 K ⊆ S 3 K\subseteq S^3 在一个穿刺连通和 ( # m C P 2 ) × (\#^m\mathbb {CP}^2)^{times } 中绑定一个适当嵌入的、空同源的圆盘。我们要找到光滑的和拓扑的 C P 2 (mathbb {CP}^2 )切片数都是有限的、非零的和不同的结。为此,我们用一个结的双支盖给出了它的光滑 C P 2 \mathbb {CP}^2 -切片数的下限,用塞弗特形式给出了它的拓扑 C P 2 \mathbb {CP}^2 -切片数的上限。
We study the CP2\mathbb {CP}^2-slicing number of knots, i.e. the smallest m≥0m\geq 0 such that a knot K⊆S3K\subseteq S^3 bounds a properly embedded, null-homologous disk in a punctured connected sum (#mCP2)×(\#^m\mathbb {CP}^2)^{\times }. We find knots for which the smooth and topological CP2\mathbb {CP}^2-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth CP2\mathbb {CP}^2-slicing number of a knot in terms of its double branched cover and an upper bound on the topological CP2\mathbb {CP}^2-slicing number in terms of the Seifert form.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.