受机器学习启发的非共轭磁体霍尔效应模型

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jonathan Kipp, Fabian R Lux, Thorben Pürling, Abigail Morrison, Stefan Blügel, Daniele Pinna, Yuriy Mokrousov
{"title":"受机器学习启发的非共轭磁体霍尔效应模型","authors":"Jonathan Kipp, Fabian R Lux, Thorben Pürling, Abigail Morrison, Stefan Blügel, Daniele Pinna, Yuriy Mokrousov","doi":"10.1088/2632-2153/ad51ca","DOIUrl":null,"url":null,"abstract":"The anomalous Hall effect has been front and center in solid state research and material science for over a century now, and the complex transport phenomena in nontrivial magnetic textures have gained an increasing amount of attention, both in theoretical and experimental studies. However, a clear path forward to capturing the influence of magnetization dynamics on anomalous Hall effect even in smallest frustrated magnets or spatially extended magnetic textures is still intensively sought after. In this work, we present an expansion of the anomalous Hall tensor into symmetrically invariant objects, encoding the magnetic configuration up to arbitrary power of spin. We show that these symmetric invariants can be utilized in conjunction with advanced regularization techniques in order to build models for the electric transport in magnetic textures which are, on one hand, complete with respect to the point group symmetry of the underlying lattice, and on the other hand, depend on a minimal number of order parameters only. Here, using a four-band tight-binding model on a honeycomb lattice, we demonstrate that the developed method can be used to address the importance and properties of higher-order contributions to transverse transport. The efficiency and breadth enabled by this method provides an ideal systematic approach to tackle the inherent complexity of response properties of noncollinear magnets, paving the way to the exploration of electric transport in intrinsically frustrated magnets as well as large-scale magnetic textures.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning inspired models for Hall effects in non-collinear magnets\",\"authors\":\"Jonathan Kipp, Fabian R Lux, Thorben Pürling, Abigail Morrison, Stefan Blügel, Daniele Pinna, Yuriy Mokrousov\",\"doi\":\"10.1088/2632-2153/ad51ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The anomalous Hall effect has been front and center in solid state research and material science for over a century now, and the complex transport phenomena in nontrivial magnetic textures have gained an increasing amount of attention, both in theoretical and experimental studies. However, a clear path forward to capturing the influence of magnetization dynamics on anomalous Hall effect even in smallest frustrated magnets or spatially extended magnetic textures is still intensively sought after. In this work, we present an expansion of the anomalous Hall tensor into symmetrically invariant objects, encoding the magnetic configuration up to arbitrary power of spin. We show that these symmetric invariants can be utilized in conjunction with advanced regularization techniques in order to build models for the electric transport in magnetic textures which are, on one hand, complete with respect to the point group symmetry of the underlying lattice, and on the other hand, depend on a minimal number of order parameters only. Here, using a four-band tight-binding model on a honeycomb lattice, we demonstrate that the developed method can be used to address the importance and properties of higher-order contributions to transverse transport. The efficiency and breadth enabled by this method provides an ideal systematic approach to tackle the inherent complexity of response properties of noncollinear magnets, paving the way to the exploration of electric transport in intrinsically frustrated magnets as well as large-scale magnetic textures.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad51ca\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad51ca","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

一个多世纪以来,反常霍尔效应一直是固态研究和材料科学的前沿和中心,而非三维磁性纹理中的复杂传输现象也在理论和实验研究中获得了越来越多的关注。然而,即使在最小的受挫磁体或空间扩展磁性纹理中,如何捕捉磁化动力学对反常霍尔效应的影响,仍然是人们孜孜以求的明确研究方向。在这项工作中,我们将反常霍尔张量扩展为对称不变对象,编码任意自旋幂的磁配置。我们表明,这些对称不变量可与先进的正则化技术结合使用,以建立磁纹理中的电输运模型,这些模型一方面与底层晶格的点群对称性有关,另一方面只依赖于极少数量的阶次参数。在这里,我们利用蜂巢晶格上的四带紧束缚模型,证明了所开发的方法可用于解决高阶贡献对横向传输的重要性和特性问题。这种方法的效率和广度为解决非共轭磁体响应特性的内在复杂性提供了一种理想的系统方法,为探索内在受挫磁体中的电输运以及大尺度磁纹理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning inspired models for Hall effects in non-collinear magnets
The anomalous Hall effect has been front and center in solid state research and material science for over a century now, and the complex transport phenomena in nontrivial magnetic textures have gained an increasing amount of attention, both in theoretical and experimental studies. However, a clear path forward to capturing the influence of magnetization dynamics on anomalous Hall effect even in smallest frustrated magnets or spatially extended magnetic textures is still intensively sought after. In this work, we present an expansion of the anomalous Hall tensor into symmetrically invariant objects, encoding the magnetic configuration up to arbitrary power of spin. We show that these symmetric invariants can be utilized in conjunction with advanced regularization techniques in order to build models for the electric transport in magnetic textures which are, on one hand, complete with respect to the point group symmetry of the underlying lattice, and on the other hand, depend on a minimal number of order parameters only. Here, using a four-band tight-binding model on a honeycomb lattice, we demonstrate that the developed method can be used to address the importance and properties of higher-order contributions to transverse transport. The efficiency and breadth enabled by this method provides an ideal systematic approach to tackle the inherent complexity of response properties of noncollinear magnets, paving the way to the exploration of electric transport in intrinsically frustrated magnets as well as large-scale magnetic textures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信