{"title":"高原流弱解的唯一性","authors":"Christopher Wright","doi":"10.1007/s00526-024-02760-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the uniqueness of weak solutions of the heat flow of half-harmonic maps, which was first introduced by Wettstein as a half-Laplacian heat flow and recently studied by Struwe using more classical techniques. On top of its similarity with the two dimensional harmonic map flow, this geometric gradient flow is of interest due to its links with free boundary minimal surfaces and the Plateau problem, leading Struwe to propose the name Plateau flow, which we adopt throughout. We obtain uniqueness of weak solutions of this flow under a natural condition on the energy, which answers positively a question raised by Struwe.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of weak solutions of the Plateau flow\",\"authors\":\"Christopher Wright\",\"doi\":\"10.1007/s00526-024-02760-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the uniqueness of weak solutions of the heat flow of half-harmonic maps, which was first introduced by Wettstein as a half-Laplacian heat flow and recently studied by Struwe using more classical techniques. On top of its similarity with the two dimensional harmonic map flow, this geometric gradient flow is of interest due to its links with free boundary minimal surfaces and the Plateau problem, leading Struwe to propose the name Plateau flow, which we adopt throughout. We obtain uniqueness of weak solutions of this flow under a natural condition on the energy, which answers positively a question raised by Struwe.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02760-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02760-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In this paper, we study the uniqueness of weak solutions of the heat flow of half-harmonic maps, which was first introduced by Wettstein as a half-Laplacian heat flow and recently studied by Struwe using more classical techniques. On top of its similarity with the two dimensional harmonic map flow, this geometric gradient flow is of interest due to its links with free boundary minimal surfaces and the Plateau problem, leading Struwe to propose the name Plateau flow, which we adopt throughout. We obtain uniqueness of weak solutions of this flow under a natural condition on the energy, which answers positively a question raised by Struwe.