Yuki Haruta, Hanyang Ye, Paul Huber, Nicholas Sandor, Antoine Pavesic Junior, Sergey Dayneko, Shuang Qiu, Vishal Yeddu, Makhsud I. Saidaminov
{"title":"通过带反馈回路的通量调节结晶技术获得可重复的高质量过氧化物单晶体","authors":"Yuki Haruta, Hanyang Ye, Paul Huber, Nicholas Sandor, Antoine Pavesic Junior, Sergey Dayneko, Shuang Qiu, Vishal Yeddu, Makhsud I. Saidaminov","doi":"10.1038/s44160-024-00576-8","DOIUrl":null,"url":null,"abstract":"Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors. Controlling linear growth rate is challenging in solution-grown single crystals. Now, flux-regulated crystallization (FRC) is developed to directly feedback-control the growth rate. When applied to metal halide perovskites, FRC achieves reproducible high crystallinity, offering a platform for synthesizing high-quality single crystals and exploring crystallization conditions.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 10","pages":"1212-1220"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44160-024-00576-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop\",\"authors\":\"Yuki Haruta, Hanyang Ye, Paul Huber, Nicholas Sandor, Antoine Pavesic Junior, Sergey Dayneko, Shuang Qiu, Vishal Yeddu, Makhsud I. Saidaminov\",\"doi\":\"10.1038/s44160-024-00576-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors. Controlling linear growth rate is challenging in solution-grown single crystals. Now, flux-regulated crystallization (FRC) is developed to directly feedback-control the growth rate. When applied to metal halide perovskites, FRC achieves reproducible high crystallinity, offering a platform for synthesizing high-quality single crystals and exploring crystallization conditions.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"3 10\",\"pages\":\"1212-1220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44160-024-00576-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00576-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00576-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop
Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors. Controlling linear growth rate is challenging in solution-grown single crystals. Now, flux-regulated crystallization (FRC) is developed to directly feedback-control the growth rate. When applied to metal halide perovskites, FRC achieves reproducible high crystallinity, offering a platform for synthesizing high-quality single crystals and exploring crystallization conditions.