通过带反馈回路的通量调节结晶技术获得可重复的高质量过氧化物单晶体

0 CHEMISTRY, MULTIDISCIPLINARY
Yuki Haruta, Hanyang Ye, Paul Huber, Nicholas Sandor, Antoine Pavesic Junior, Sergey Dayneko, Shuang Qiu, Vishal Yeddu, Makhsud I. Saidaminov
{"title":"通过带反馈回路的通量调节结晶技术获得可重复的高质量过氧化物单晶体","authors":"Yuki Haruta, Hanyang Ye, Paul Huber, Nicholas Sandor, Antoine Pavesic Junior, Sergey Dayneko, Shuang Qiu, Vishal Yeddu, Makhsud I. Saidaminov","doi":"10.1038/s44160-024-00576-8","DOIUrl":null,"url":null,"abstract":"Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors. Controlling linear growth rate is challenging in solution-grown single crystals. Now, flux-regulated crystallization (FRC) is developed to directly feedback-control the growth rate. When applied to metal halide perovskites, FRC achieves reproducible high crystallinity, offering a platform for synthesizing high-quality single crystals and exploring crystallization conditions.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 10","pages":"1212-1220"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44160-024-00576-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop\",\"authors\":\"Yuki Haruta, Hanyang Ye, Paul Huber, Nicholas Sandor, Antoine Pavesic Junior, Sergey Dayneko, Shuang Qiu, Vishal Yeddu, Makhsud I. Saidaminov\",\"doi\":\"10.1038/s44160-024-00576-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors. Controlling linear growth rate is challenging in solution-grown single crystals. Now, flux-regulated crystallization (FRC) is developed to directly feedback-control the growth rate. When applied to metal halide perovskites, FRC achieves reproducible high crystallinity, offering a platform for synthesizing high-quality single crystals and exploring crystallization conditions.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"3 10\",\"pages\":\"1212-1220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44160-024-00576-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00576-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00576-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

线性生长速率是决定晶体质量的关键因素,但由于复杂的结晶动力学受多种参数的影响,因此线性生长速率的控制一直是溶液生长单晶的难题。在这里,我们引入了一种流量调节结晶(FRC)方法,可直接监测和反馈控制线性生长速率,从而避免了控制单个生长条件的需要。在应用于金属卤化物包晶时,FRC 在合成 CH3NH3PbBr3 和 CsPbBr3 单晶时保持了超过 40 小时的稳定线性生长速率,在厘米级单晶中实现了出色的结晶度(以 X 射线摇摆曲线中 15.3 弧秒的半最大全宽来量化)。FRC 是合成商业化所需的高质量晶体和系统探索结晶条件的可靠平台,可保持关键参数--线性生长速率--不变,从而全面了解其他影响因素的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop

Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop

Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop
Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CH3NH3PbBr3 and CsPbBr3 single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.3 arcsec in the X-ray rocking curve) in a centimetre-scale single crystal. The FRC is a reliable platform for synthesizing high-quality crystals essential for commercialization and systematically exploring crystallization conditions, maintaining a key parameter—the linear growth rate—constant, which enables a comprehensive understanding of the impact of other influencing factors. Controlling linear growth rate is challenging in solution-grown single crystals. Now, flux-regulated crystallization (FRC) is developed to directly feedback-control the growth rate. When applied to metal halide perovskites, FRC achieves reproducible high crystallinity, offering a platform for synthesizing high-quality single crystals and exploring crystallization conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信