厄林电势微分方程

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Alexei M. Frolov
{"title":"厄林电势微分方程","authors":"Alexei M. Frolov","doi":"10.1140/epjb/s10051-024-00728-x","DOIUrl":null,"url":null,"abstract":"<p>The second-order differential equation for the Uehling potential is derived explicitly. The right side of this differential equation is a linear combination of the two Macdonald’s functions <span>\\(K_{0}(b r)\\)</span> and <span>\\(K_{1}(b r)\\)</span>. This central potential is of great interest in many QED problems, since it describes the lowest order correction for vacuum polarization in few- and many-electron atoms, ions, muonic and bi-muonic atoms/ions as well as in other similar systems.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential equation for the Uehling potential\",\"authors\":\"Alexei M. Frolov\",\"doi\":\"10.1140/epjb/s10051-024-00728-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The second-order differential equation for the Uehling potential is derived explicitly. The right side of this differential equation is a linear combination of the two Macdonald’s functions <span>\\\\(K_{0}(b r)\\\\)</span> and <span>\\\\(K_{1}(b r)\\\\)</span>. This central potential is of great interest in many QED problems, since it describes the lowest order correction for vacuum polarization in few- and many-electron atoms, ions, muonic and bi-muonic atoms/ions as well as in other similar systems.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00728-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00728-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 明确推导出了上林势的二阶微分方程。这个微分方程的右边是两个麦克唐纳函数\(K_{0}(b r)\)和\(K_{1}(b r)\)的线性组合。这个中心势在许多 QED 问题中都具有重大意义,因为它描述了少电子和多电子原子、离子、μ介子和双μ介子原子/离子以及其他类似系统中真空极化的最低阶修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Differential equation for the Uehling potential

Differential equation for the Uehling potential

Differential equation for the Uehling potential

The second-order differential equation for the Uehling potential is derived explicitly. The right side of this differential equation is a linear combination of the two Macdonald’s functions \(K_{0}(b r)\) and \(K_{1}(b r)\). This central potential is of great interest in many QED problems, since it describes the lowest order correction for vacuum polarization in few- and many-electron atoms, ions, muonic and bi-muonic atoms/ions as well as in other similar systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信