使用弱伽勒金方法扩展一般多面体分区上的莫利元素

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Dan Li, Chunmei Wang, Junping Wang
{"title":"使用弱伽勒金方法扩展一般多面体分区上的莫利元素","authors":"Dan Li, Chunmei Wang, Junping Wang","doi":"10.1007/s10915-024-02580-8","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an extension of the well-known Morley element for the biharmonic equation, extending its application from triangular elements to general polytopal elements using the weak Galerkin finite element methods. By leveraging the Schur complement of the weak Galerkin method, this extension not only preserves the same degrees of freedom as the Morley element on triangular elements but also expands its applicability to general polytopal elements. The numerical scheme is devised by locally constructing weak tangential derivatives and weak second-order partial derivatives. Error estimates for the numerical approximation are established in both the energy norm and the <span>\\(L^2\\)</span> norm. A series of numerical experiments are conducted to validate the theoretical developments.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension of the Morley Element on General Polytopal Partitions Using Weak Galerkin Methods\",\"authors\":\"Dan Li, Chunmei Wang, Junping Wang\",\"doi\":\"10.1007/s10915-024-02580-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces an extension of the well-known Morley element for the biharmonic equation, extending its application from triangular elements to general polytopal elements using the weak Galerkin finite element methods. By leveraging the Schur complement of the weak Galerkin method, this extension not only preserves the same degrees of freedom as the Morley element on triangular elements but also expands its applicability to general polytopal elements. The numerical scheme is devised by locally constructing weak tangential derivatives and weak second-order partial derivatives. Error estimates for the numerical approximation are established in both the energy norm and the <span>\\\\(L^2\\\\)</span> norm. A series of numerical experiments are conducted to validate the theoretical developments.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02580-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02580-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了著名的 Morley 元素对双谐波方程的扩展,利用弱 Galerkin 有限元方法将其应用从三角形元素扩展到了一般的多边形元素。通过利用弱 Galerkin 方法的 Schur 补充,该扩展不仅保留了与三角形元素上的 Morley 元素相同的自由度,而且还将其适用性扩展到了一般的多边形元素上。数值方案是通过局部构造弱切向导数和弱二阶偏导数设计的。在能量规范和 \(L^2\) 规范中建立了数值近似的误差估计。进行了一系列数值实验来验证理论发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Extension of the Morley Element on General Polytopal Partitions Using Weak Galerkin Methods

An Extension of the Morley Element on General Polytopal Partitions Using Weak Galerkin Methods

This paper introduces an extension of the well-known Morley element for the biharmonic equation, extending its application from triangular elements to general polytopal elements using the weak Galerkin finite element methods. By leveraging the Schur complement of the weak Galerkin method, this extension not only preserves the same degrees of freedom as the Morley element on triangular elements but also expands its applicability to general polytopal elements. The numerical scheme is devised by locally constructing weak tangential derivatives and weak second-order partial derivatives. Error estimates for the numerical approximation are established in both the energy norm and the \(L^2\) norm. A series of numerical experiments are conducted to validate the theoretical developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信