具有不可分割可变系数的空间分数扩散方程的 $$\tau $$ - 前提器

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Xue-Lei Lin, Michael K. Ng
{"title":"具有不可分割可变系数的空间分数扩散方程的 $$\\tau $$ - 前提器","authors":"Xue-Lei Lin, Michael K. Ng","doi":"10.1007/s10915-024-02574-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a <span>\\(\\tau \\)</span>-matrix approximation based preconditioner for the linear systems arising from discretization of unsteady state Riesz space fractional diffusion equation with non-separable variable coefficients. The structure of coefficient matrices of the linear systems is identity plus summation of diagonal-times-multilevel-Toeplitz matrices. In our preconditioning technique, the diagonal matrices are approximated by scalar identity matrices and the Toeplitz matrices are approximated by <span>\\(\\tau \\)</span>-matrices (a type of matrices diagonalizable by discrete sine transforms). The proposed preconditioner is fast invertible through the fast sine transform (FST) algorithm. Theoretically, we show that the GMRES solver for the preconditioned systems has an optimal convergence rate (a convergence rate independent of discretization stepsizes). To the best of our knowledge, this is the first preconditioning method with the optimal convergence rate for the variable-coefficients space fractional diffusion equation. Numerical results are reported to demonstrate the efficiency of the proposed method.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"30 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A $$\\\\tau $$ -Preconditioner for Space Fractional Diffusion Equation with Non-separable Variable Coefficients\",\"authors\":\"Xue-Lei Lin, Michael K. Ng\",\"doi\":\"10.1007/s10915-024-02574-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a <span>\\\\(\\\\tau \\\\)</span>-matrix approximation based preconditioner for the linear systems arising from discretization of unsteady state Riesz space fractional diffusion equation with non-separable variable coefficients. The structure of coefficient matrices of the linear systems is identity plus summation of diagonal-times-multilevel-Toeplitz matrices. In our preconditioning technique, the diagonal matrices are approximated by scalar identity matrices and the Toeplitz matrices are approximated by <span>\\\\(\\\\tau \\\\)</span>-matrices (a type of matrices diagonalizable by discrete sine transforms). The proposed preconditioner is fast invertible through the fast sine transform (FST) algorithm. Theoretically, we show that the GMRES solver for the preconditioned systems has an optimal convergence rate (a convergence rate independent of discretization stepsizes). To the best of our knowledge, this is the first preconditioning method with the optimal convergence rate for the variable-coefficients space fractional diffusion equation. Numerical results are reported to demonstrate the efficiency of the proposed method.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02574-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02574-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于矩阵近似的预处理方法,用于非稳态里兹空间分数扩散方程离散化过程中产生的线性系统,该方程具有不可分离的可变系数。线性系统的系数矩阵结构是对角-倍-多重-托普利兹矩阵的特征加求和。在我们的预处理技术中,对角矩阵由标量标识矩阵近似,Toeplitz 矩阵由 \(\tau \)-矩阵(一种可通过离散正弦变换对角的矩阵)近似。通过快速正弦变换(FST)算法,所提出的前置条件器是快速可逆的。我们从理论上证明,针对预处理系统的 GMRES 求解器具有最佳收敛速率(收敛速率与离散化步长无关)。据我们所知,这是第一种对可变系数空间分数扩散方程具有最佳收敛率的预处理方法。报告的数值结果证明了所提方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A $$\tau $$ -Preconditioner for Space Fractional Diffusion Equation with Non-separable Variable Coefficients

In this paper, we study a \(\tau \)-matrix approximation based preconditioner for the linear systems arising from discretization of unsteady state Riesz space fractional diffusion equation with non-separable variable coefficients. The structure of coefficient matrices of the linear systems is identity plus summation of diagonal-times-multilevel-Toeplitz matrices. In our preconditioning technique, the diagonal matrices are approximated by scalar identity matrices and the Toeplitz matrices are approximated by \(\tau \)-matrices (a type of matrices diagonalizable by discrete sine transforms). The proposed preconditioner is fast invertible through the fast sine transform (FST) algorithm. Theoretically, we show that the GMRES solver for the preconditioned systems has an optimal convergence rate (a convergence rate independent of discretization stepsizes). To the best of our knowledge, this is the first preconditioning method with the optimal convergence rate for the variable-coefficients space fractional diffusion equation. Numerical results are reported to demonstrate the efficiency of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信