{"title":"针对椭圆界面问题的二阶梯度逼近紧凑耦合界面方法","authors":"Ray Zirui Zhang, Li-Tien Cheng","doi":"10.1007/s10915-024-02587-1","DOIUrl":null,"url":null,"abstract":"<p>We propose the Compact Coupling Interface Method, a finite difference method capable of obtaining second-order accurate approximations of not only solution values but their gradients, for elliptic complex interface problems with interfacial jump conditions. Such elliptic interface boundary value problems with interfacial jump conditions are a critical part of numerous applications in fields such as heat conduction, fluid flow, materials science, and protein docking, to name a few. A typical example involves the construction of biomolecular shapes, where such elliptic interface problems are in the form of linearized Poisson–Boltzmann equations, involving discontinuous dielectric constants across the interface, that govern electrostatic contributions. Additionally, when interface dynamics are involved, the normal velocity of the interface might be comprised of the normal derivatives of solution, which can be approximated to second-order by our method, resulting in accurate interface dynamics. Our method, which can be formulated in arbitrary spatial dimensions, combines elements of the highly-regarded Coupling Interface Method, for such elliptic interface problems, and Smereka’s second-order accurate discrete delta function. The result is a variation and hybrid with a more compact stencil than that found in the Coupling Interface Method, and with advantages, borne out in numerical experiments involving both geometric model problems and complex biomolecular surfaces, in more robust error profiles.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"35 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compact Coupling Interface Method with Second-Order Gradient Approximation for Elliptic Interface Problems\",\"authors\":\"Ray Zirui Zhang, Li-Tien Cheng\",\"doi\":\"10.1007/s10915-024-02587-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose the Compact Coupling Interface Method, a finite difference method capable of obtaining second-order accurate approximations of not only solution values but their gradients, for elliptic complex interface problems with interfacial jump conditions. Such elliptic interface boundary value problems with interfacial jump conditions are a critical part of numerous applications in fields such as heat conduction, fluid flow, materials science, and protein docking, to name a few. A typical example involves the construction of biomolecular shapes, where such elliptic interface problems are in the form of linearized Poisson–Boltzmann equations, involving discontinuous dielectric constants across the interface, that govern electrostatic contributions. Additionally, when interface dynamics are involved, the normal velocity of the interface might be comprised of the normal derivatives of solution, which can be approximated to second-order by our method, resulting in accurate interface dynamics. Our method, which can be formulated in arbitrary spatial dimensions, combines elements of the highly-regarded Coupling Interface Method, for such elliptic interface problems, and Smereka’s second-order accurate discrete delta function. The result is a variation and hybrid with a more compact stencil than that found in the Coupling Interface Method, and with advantages, borne out in numerical experiments involving both geometric model problems and complex biomolecular surfaces, in more robust error profiles.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02587-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02587-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Compact Coupling Interface Method with Second-Order Gradient Approximation for Elliptic Interface Problems
We propose the Compact Coupling Interface Method, a finite difference method capable of obtaining second-order accurate approximations of not only solution values but their gradients, for elliptic complex interface problems with interfacial jump conditions. Such elliptic interface boundary value problems with interfacial jump conditions are a critical part of numerous applications in fields such as heat conduction, fluid flow, materials science, and protein docking, to name a few. A typical example involves the construction of biomolecular shapes, where such elliptic interface problems are in the form of linearized Poisson–Boltzmann equations, involving discontinuous dielectric constants across the interface, that govern electrostatic contributions. Additionally, when interface dynamics are involved, the normal velocity of the interface might be comprised of the normal derivatives of solution, which can be approximated to second-order by our method, resulting in accurate interface dynamics. Our method, which can be formulated in arbitrary spatial dimensions, combines elements of the highly-regarded Coupling Interface Method, for such elliptic interface problems, and Smereka’s second-order accurate discrete delta function. The result is a variation and hybrid with a more compact stencil than that found in the Coupling Interface Method, and with advantages, borne out in numerical experiments involving both geometric model problems and complex biomolecular surfaces, in more robust error profiles.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.