二维蒙日-安培方程的可混合非连续伽勒金方法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Ngoc Cuong Nguyen, Jaime Peraire
{"title":"二维蒙日-安培方程的可混合非连续伽勒金方法","authors":"Ngoc Cuong Nguyen, Jaime Peraire","doi":"10.1007/s10915-024-02604-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to <i>r</i>-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This <i>r</i>-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of <i>r</i>-adaptive high-order meshes on planar and curved domains.\n</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"61 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation\",\"authors\":\"Ngoc Cuong Nguyen, Jaime Peraire\",\"doi\":\"10.1007/s10915-024-02604-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to <i>r</i>-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This <i>r</i>-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of <i>r</i>-adaptive high-order meshes on planar and curved domains.\\n</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02604-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02604-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了两种用于数值求解二维 Monge-Ampère 方程的可混合非连续伽勒金 (HDG) 方法。第一种 HDG 方法采用牛顿法求解非线性椭圆 Monge-Ampère 方程。第二种 HDG 方法用于求解泊松方程序列,直到收敛到蒙日-安培方程的定点解为止。通过数值示例展示了 HDG 方法的收敛性和准确性。此外,通过最优传输理论重新分配给定的标量密度函数,将 HDG 方法应用于 r 自适应网格生成。这种 r-自适应方法导致蒙日-安培方程与由密度函数的最优传输产生的非线性诺伊曼边界条件,从而使生成的高阶网格与边界相一致。因此,我们扩展了 HDG 方法,以处理非线性 Neumann 边界条件。数值实验说明了在平面和曲面域上生成 r 自适应高阶网格的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation

Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation

We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to r-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This r-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of r-adaptive high-order meshes on planar and curved domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信