Sang-Hoon Shin, T. T. T. Trang, Bong-Hoon Chung, Yong-Gyun Jeong, Jae-Sang Lee, Yoon-Uk Heo
{"title":"电镀锌钢中水泡形成机理的显微研究","authors":"Sang-Hoon Shin, T. T. T. Trang, Bong-Hoon Chung, Yong-Gyun Jeong, Jae-Sang Lee, Yoon-Uk Heo","doi":"10.1007/s12540-024-01723-8","DOIUrl":null,"url":null,"abstract":"<p>The blister formation mechanism in electrogalvanized steel was studied by analyzing the blister’s internal structure. Electrochemical hydrogen charging was employed to absorb hydrogen into the steel plate and to induce blister formation. Analysis of the blister interior revealed that the initial formation of blisters occurred at the cracks located at the interface between the zinc layer and the steel substrate. These cracks originated from the steel substrate’s intergranular fracture or carbon contaminants’ adsorption on the steel surface. Grain boundary precipitates in hot-rolled plates form the intergranular crack after cold-rolling. A hydrogen anion was found inside the blister formed at the pre-existing intergranular crack. However, methylidyne (CH<sup>−</sup>) and methylene anion (CH<sub>2</sub><sup>−</sup>) dissociated from methane, as well as hydrogen anions were detected inside the blister formed at the carbon-contaminated steel surface. Methane gas is generated by the combination of absorbed hydrogen with carbon inside the crack. This research clarifies the detailed formation mechanism of blisters in electrogalvanized steel.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"358 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Study on the Blister Formation Mechanism in Electrogalvanized Steel\",\"authors\":\"Sang-Hoon Shin, T. T. T. Trang, Bong-Hoon Chung, Yong-Gyun Jeong, Jae-Sang Lee, Yoon-Uk Heo\",\"doi\":\"10.1007/s12540-024-01723-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blister formation mechanism in electrogalvanized steel was studied by analyzing the blister’s internal structure. Electrochemical hydrogen charging was employed to absorb hydrogen into the steel plate and to induce blister formation. Analysis of the blister interior revealed that the initial formation of blisters occurred at the cracks located at the interface between the zinc layer and the steel substrate. These cracks originated from the steel substrate’s intergranular fracture or carbon contaminants’ adsorption on the steel surface. Grain boundary precipitates in hot-rolled plates form the intergranular crack after cold-rolling. A hydrogen anion was found inside the blister formed at the pre-existing intergranular crack. However, methylidyne (CH<sup>−</sup>) and methylene anion (CH<sub>2</sub><sup>−</sup>) dissociated from methane, as well as hydrogen anions were detected inside the blister formed at the carbon-contaminated steel surface. Methane gas is generated by the combination of absorbed hydrogen with carbon inside the crack. This research clarifies the detailed formation mechanism of blisters in electrogalvanized steel.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"358 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01723-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01723-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microscopic Study on the Blister Formation Mechanism in Electrogalvanized Steel
The blister formation mechanism in electrogalvanized steel was studied by analyzing the blister’s internal structure. Electrochemical hydrogen charging was employed to absorb hydrogen into the steel plate and to induce blister formation. Analysis of the blister interior revealed that the initial formation of blisters occurred at the cracks located at the interface between the zinc layer and the steel substrate. These cracks originated from the steel substrate’s intergranular fracture or carbon contaminants’ adsorption on the steel surface. Grain boundary precipitates in hot-rolled plates form the intergranular crack after cold-rolling. A hydrogen anion was found inside the blister formed at the pre-existing intergranular crack. However, methylidyne (CH−) and methylene anion (CH2−) dissociated from methane, as well as hydrogen anions were detected inside the blister formed at the carbon-contaminated steel surface. Methane gas is generated by the combination of absorbed hydrogen with carbon inside the crack. This research clarifies the detailed formation mechanism of blisters in electrogalvanized steel.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.