Xiangyan Yun, Bo Zhou, Hanlin Hu, Haizhe Zhong, Denghui Xu, Henan Li, Yumeng Shi
{"title":"高效制备高质量金属卤化物单晶的再结晶策略","authors":"Xiangyan Yun, Bo Zhou, Hanlin Hu, Haizhe Zhong, Denghui Xu, Henan Li, Yumeng Shi","doi":"10.1002/admt.202400757","DOIUrl":null,"url":null,"abstract":"<p>Large size high-quality perovskite single-crystals are highly desirable for investigating their fundamental materials properties and realizing state of the art electronic/optoelectronic device performance. Herein, a novel single-crystal growth method is reported by recrystallization of perovskites in oversaturated solutions. Perovskite single crystals including both organic–inorganic hybrid metal halides and their all-inorganic counterparts can be obtained in large amounts by this method. All of the synthesized perovskite single crystals exhibit large crystal sizes (centimeter level) and exceptional light emission properties. Meanwhile, the single-crystal growth can be well controlled and the solvent can be reused for cycles of single-crystal growth, which sheds light on the preparation of perovskite materials in a way of green chemistry. In addition, thermodynamic growth principles for the single-crystal growth are proposed, providing a universal approval for metal halide single-crystal synthesis.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 19","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recrystallization Strategy for Efficient Preparation of Metal Halide Single Crystals with High-Quality\",\"authors\":\"Xiangyan Yun, Bo Zhou, Hanlin Hu, Haizhe Zhong, Denghui Xu, Henan Li, Yumeng Shi\",\"doi\":\"10.1002/admt.202400757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large size high-quality perovskite single-crystals are highly desirable for investigating their fundamental materials properties and realizing state of the art electronic/optoelectronic device performance. Herein, a novel single-crystal growth method is reported by recrystallization of perovskites in oversaturated solutions. Perovskite single crystals including both organic–inorganic hybrid metal halides and their all-inorganic counterparts can be obtained in large amounts by this method. All of the synthesized perovskite single crystals exhibit large crystal sizes (centimeter level) and exceptional light emission properties. Meanwhile, the single-crystal growth can be well controlled and the solvent can be reused for cycles of single-crystal growth, which sheds light on the preparation of perovskite materials in a way of green chemistry. In addition, thermodynamic growth principles for the single-crystal growth are proposed, providing a universal approval for metal halide single-crystal synthesis.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"9 19\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400757\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recrystallization Strategy for Efficient Preparation of Metal Halide Single Crystals with High-Quality
Large size high-quality perovskite single-crystals are highly desirable for investigating their fundamental materials properties and realizing state of the art electronic/optoelectronic device performance. Herein, a novel single-crystal growth method is reported by recrystallization of perovskites in oversaturated solutions. Perovskite single crystals including both organic–inorganic hybrid metal halides and their all-inorganic counterparts can be obtained in large amounts by this method. All of the synthesized perovskite single crystals exhibit large crystal sizes (centimeter level) and exceptional light emission properties. Meanwhile, the single-crystal growth can be well controlled and the solvent can be reused for cycles of single-crystal growth, which sheds light on the preparation of perovskite materials in a way of green chemistry. In addition, thermodynamic growth principles for the single-crystal growth are proposed, providing a universal approval for metal halide single-crystal synthesis.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.