具有随机系数的克拉梅尔-伦德伯格模型下的受约束均值方差投资-再保险

Xiaomin Shi, Zuo Quan Xu
{"title":"具有随机系数的克拉梅尔-伦德伯格模型下的受约束均值方差投资-再保险","authors":"Xiaomin Shi, Zuo Quan Xu","doi":"arxiv-2406.10465","DOIUrl":null,"url":null,"abstract":"In this paper, we study an optimal mean-variance investment-reinsurance\nproblem for an insurer (she) under a Cram\\'er-Lundberg model with random\ncoefficients. At any time, the insurer can purchase reinsurance or acquire new\nbusiness and invest her surplus in a security market consisting of a risk-free\nasset and multiple risky assets, subject to a general convex cone investment\nconstraint. We reduce the problem to a constrained stochastic linear-quadratic\ncontrol problem with jumps whose solution is related to a system of partially\ncoupled stochastic Riccati equations (SREs). Then we devote ourselves to\nestablishing the existence and uniqueness of solutions to the SREs by pure\nbackward stochastic differential equation (BSDE) techniques. We achieve this\nwith the help of approximation procedure, comparison theorems for BSDEs with\njumps, log transformation and BMO martingales. The efficient\ninvestment-reinsurance strategy and efficient mean-variance frontier are\nexplicitly given through the solutions of the SREs, which are shown to be a\nlinear feedback form of the wealth process and a half-line, respectively.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"252 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constrained mean-variance investment-reinsurance under the Cramér-Lundberg model with random coefficients\",\"authors\":\"Xiaomin Shi, Zuo Quan Xu\",\"doi\":\"arxiv-2406.10465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study an optimal mean-variance investment-reinsurance\\nproblem for an insurer (she) under a Cram\\\\'er-Lundberg model with random\\ncoefficients. At any time, the insurer can purchase reinsurance or acquire new\\nbusiness and invest her surplus in a security market consisting of a risk-free\\nasset and multiple risky assets, subject to a general convex cone investment\\nconstraint. We reduce the problem to a constrained stochastic linear-quadratic\\ncontrol problem with jumps whose solution is related to a system of partially\\ncoupled stochastic Riccati equations (SREs). Then we devote ourselves to\\nestablishing the existence and uniqueness of solutions to the SREs by pure\\nbackward stochastic differential equation (BSDE) techniques. We achieve this\\nwith the help of approximation procedure, comparison theorems for BSDEs with\\njumps, log transformation and BMO martingales. The efficient\\ninvestment-reinsurance strategy and efficient mean-variance frontier are\\nexplicitly given through the solutions of the SREs, which are shown to be a\\nlinear feedback form of the wealth process and a half-line, respectively.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.10465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个具有随机系数的 Cram\'er-Lundberg 模型下保险人(她)的最优均值-方差投资-再保险问题。在任何时候,保险人都可以购买再保险或获取新业务,并将其盈余投资于由无风险资产和多种风险资产组成的证券市场,但必须遵守一般的凸锥投资约束。我们将该问题简化为一个带跳跃的受约束随机线性二次控制问题,其解与部分耦合随机里卡提方程(SRE)系统相关。然后,我们致力于通过纯回向随机微分方程(BSDE)技术来确定 SREs 解的存在性和唯一性。我们借助近似程序、有跳跃的 BSDE 的比较定理、对数变换和 BMO 马丁格尔来实现这一目标。有效的投资-再保险策略和有效的均值-方差前沿通过 SRE 的解明确给出,并分别证明它们是财富过程的线性反馈形式和半线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained mean-variance investment-reinsurance under the Cramér-Lundberg model with random coefficients
In this paper, we study an optimal mean-variance investment-reinsurance problem for an insurer (she) under a Cram\'er-Lundberg model with random coefficients. At any time, the insurer can purchase reinsurance or acquire new business and invest her surplus in a security market consisting of a risk-free asset and multiple risky assets, subject to a general convex cone investment constraint. We reduce the problem to a constrained stochastic linear-quadratic control problem with jumps whose solution is related to a system of partially coupled stochastic Riccati equations (SREs). Then we devote ourselves to establishing the existence and uniqueness of solutions to the SREs by pure backward stochastic differential equation (BSDE) techniques. We achieve this with the help of approximation procedure, comparison theorems for BSDEs with jumps, log transformation and BMO martingales. The efficient investment-reinsurance strategy and efficient mean-variance frontier are explicitly given through the solutions of the SREs, which are shown to be a linear feedback form of the wealth process and a half-line, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信