{"title":"设计低复杂度编码调制,采用系统几何星座整形的高阶 QAM","authors":"Eito Kurihara;Hideki Ochiai","doi":"10.1109/OJCOMS.2024.3421518","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the performance of geometric constellation shaping for highorder coded quadrature amplitude modulation (QAM) over an additive white Gaussian noise (AWGN) channel. We focus on a systematic design where a single parameter uniquely determines the entire constellation points according to the truncated Gaussian distribution, and the parameter is optimized based on the resulting mutual information. Our main objective is to combine the proposed systematic geometric shaping with practical coded modulation so as to achieve high bandwidth efficiency with low design/decoding complexity. To this end, we investigate the use of multilevel coding (MLC) under multistage decoding (MSD) as well as bit-interleaved coded modulation (BICM), along with pulse amplitude modulation (PAM) consisting of as much as 128 signal points, i.e., leading to 16 384-ary QAM in the two-dimensional case. Our comparative studies employing the off-the-shelf binary punctured turbo codes show that, as we target higher spectral efficiency, MLC with MSD is more attractive than BICM in view of both bit error rate (BER) performance and decoding complexity. In addition, we introduce new closed-form bounds related to constellation constrained capacity, based on which one can quickly assess the capacity behavior of given discrete PAM constellations.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579792","citationCount":"0","resultStr":"{\"title\":\"Design of Low-Complexity Coded Modulation Employing High-Order QAM With Systematic Geometric Constellation Shaping\",\"authors\":\"Eito Kurihara;Hideki Ochiai\",\"doi\":\"10.1109/OJCOMS.2024.3421518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the performance of geometric constellation shaping for highorder coded quadrature amplitude modulation (QAM) over an additive white Gaussian noise (AWGN) channel. We focus on a systematic design where a single parameter uniquely determines the entire constellation points according to the truncated Gaussian distribution, and the parameter is optimized based on the resulting mutual information. Our main objective is to combine the proposed systematic geometric shaping with practical coded modulation so as to achieve high bandwidth efficiency with low design/decoding complexity. To this end, we investigate the use of multilevel coding (MLC) under multistage decoding (MSD) as well as bit-interleaved coded modulation (BICM), along with pulse amplitude modulation (PAM) consisting of as much as 128 signal points, i.e., leading to 16 384-ary QAM in the two-dimensional case. Our comparative studies employing the off-the-shelf binary punctured turbo codes show that, as we target higher spectral efficiency, MLC with MSD is more attractive than BICM in view of both bit error rate (BER) performance and decoding complexity. In addition, we introduce new closed-form bounds related to constellation constrained capacity, based on which one can quickly assess the capacity behavior of given discrete PAM constellations.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579792\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579792/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579792/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of Low-Complexity Coded Modulation Employing High-Order QAM With Systematic Geometric Constellation Shaping
In this work, we investigate the performance of geometric constellation shaping for highorder coded quadrature amplitude modulation (QAM) over an additive white Gaussian noise (AWGN) channel. We focus on a systematic design where a single parameter uniquely determines the entire constellation points according to the truncated Gaussian distribution, and the parameter is optimized based on the resulting mutual information. Our main objective is to combine the proposed systematic geometric shaping with practical coded modulation so as to achieve high bandwidth efficiency with low design/decoding complexity. To this end, we investigate the use of multilevel coding (MLC) under multistage decoding (MSD) as well as bit-interleaved coded modulation (BICM), along with pulse amplitude modulation (PAM) consisting of as much as 128 signal points, i.e., leading to 16 384-ary QAM in the two-dimensional case. Our comparative studies employing the off-the-shelf binary punctured turbo codes show that, as we target higher spectral efficiency, MLC with MSD is more attractive than BICM in view of both bit error rate (BER) performance and decoding complexity. In addition, we introduce new closed-form bounds related to constellation constrained capacity, based on which one can quickly assess the capacity behavior of given discrete PAM constellations.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.