研究马来酸酐调谐纤维素纳米晶体和单壁碳纳米片混合体在超级电容器应用中的电化学性能

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nitesh Choudhary, Shiva Singh, Gaurav Malik, Shakshi Bhardwaj, Siddharth Sharma, Akshay Tomar, Sheetal Issar, Ramesh Chandra and Pradip Kumar Maji
{"title":"研究马来酸酐调谐纤维素纳米晶体和单壁碳纳米片混合体在超级电容器应用中的电化学性能","authors":"Nitesh Choudhary, Shiva Singh, Gaurav Malik, Shakshi Bhardwaj, Siddharth Sharma, Akshay Tomar, Sheetal Issar, Ramesh Chandra and Pradip Kumar Maji","doi":"10.1039/D4SE00286E","DOIUrl":null,"url":null,"abstract":"<p >Adopting a green and environmentally friendly strategy requires the development of supercapacitor electrodes using sustainable, renewable, and environmentally beneficial materials. Chemically stable and renewable cellulose-based supercapacitors need high-quality carbon materials with excellent mechanical and electrical characteristics to create a three-dimensional network-based electrode. Nevertheless, using cellulose as a supercapacitor electrode with enhanced electrochemical characteristics presents a difficulty. This paper describes creating and producing electrodes for supercapacitors using nano-composites consisting of wrapped-around single-walled carbon nanotubes to improve performance. The electrode's optimal electrochemical characteristics were achieved by using a concentration of 9 wt% MACNC/CNT nanocomposites. The proposed electrode material for the MACNC-based flexible supercapacitor assembly demonstrates outstanding electrochemical stability and effective electrochemical performance. When tested in a three-electrode cell configuration, it achieves an areal capacitance of 1389.202 mF cm<small><sup>−2</sup></small> at a current density of 0.02 A cm<small><sup>−2</sup></small>, with 74.6% cyclic retention after 12 000 cycles. This study effectively converted agricultural waste into high-performing supercapacitor electrodes using a simple and cost-efficient method. This innovative design and outstanding electrochemical performance show great promise in using environmentally friendly materials to improve nanocellulose-based sustainable energy storage systems.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically tuned cellulose nanocrystals/single wall carbon nanosheet based electrodes for hybrid supercapacitors†\",\"authors\":\"Nitesh Choudhary, Shiva Singh, Gaurav Malik, Shakshi Bhardwaj, Siddharth Sharma, Akshay Tomar, Sheetal Issar, Ramesh Chandra and Pradip Kumar Maji\",\"doi\":\"10.1039/D4SE00286E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Adopting a green and environmentally friendly strategy requires the development of supercapacitor electrodes using sustainable, renewable, and environmentally beneficial materials. Chemically stable and renewable cellulose-based supercapacitors need high-quality carbon materials with excellent mechanical and electrical characteristics to create a three-dimensional network-based electrode. Nevertheless, using cellulose as a supercapacitor electrode with enhanced electrochemical characteristics presents a difficulty. This paper describes creating and producing electrodes for supercapacitors using nano-composites consisting of wrapped-around single-walled carbon nanotubes to improve performance. The electrode's optimal electrochemical characteristics were achieved by using a concentration of 9 wt% MACNC/CNT nanocomposites. The proposed electrode material for the MACNC-based flexible supercapacitor assembly demonstrates outstanding electrochemical stability and effective electrochemical performance. When tested in a three-electrode cell configuration, it achieves an areal capacitance of 1389.202 mF cm<small><sup>−2</sup></small> at a current density of 0.02 A cm<small><sup>−2</sup></small>, with 74.6% cyclic retention after 12 000 cycles. This study effectively converted agricultural waste into high-performing supercapacitor electrodes using a simple and cost-efficient method. This innovative design and outstanding electrochemical performance show great promise in using environmentally friendly materials to improve nanocellulose-based sustainable energy storage systems.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00286e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00286e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用环保、可持续和可再生材料制造超级电容器电极,对于采用绿色和生态意识战略至关重要。化学性质稳定且可再生的纤维素基超级电容器需要具有出色机械和电气特性的优质碳材料,以创建基于三维网络的电极。然而,将纤维素用作具有更强电化学特性的超级电容器电极存在困难。本文介绍了利用马来酸酐调谐纤维素纳米晶体(MACNC)包裹单壁碳纳米管组成的纳米复合材料来创建和生产超级电容器电极,以提高其性能。通过使用浓度为 9wt% 的 MACNC/CNT 纳米复合材料,电极实现了最佳电化学特性。所提出的基于 MACNC 的柔性超级电容器组件电极材料具有出色的电化学稳定性和有效的电化学性能。在三电极电池配置中进行测试时,当电流密度为 0.005 A/cm2 时,它的面积电容达到 1389.202 mF/cm2,4000 次循环后电容保持率为 91%。这项研究采用简单、经济的方法,有效地将农业废弃物转化为高性能超级电容器电极。这种创新设计和出色的电化学性能表明,使用环保材料改进基于纳米纤维素的可持续储能系统大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemically tuned cellulose nanocrystals/single wall carbon nanosheet based electrodes for hybrid supercapacitors†

Chemically tuned cellulose nanocrystals/single wall carbon nanosheet based electrodes for hybrid supercapacitors†

Adopting a green and environmentally friendly strategy requires the development of supercapacitor electrodes using sustainable, renewable, and environmentally beneficial materials. Chemically stable and renewable cellulose-based supercapacitors need high-quality carbon materials with excellent mechanical and electrical characteristics to create a three-dimensional network-based electrode. Nevertheless, using cellulose as a supercapacitor electrode with enhanced electrochemical characteristics presents a difficulty. This paper describes creating and producing electrodes for supercapacitors using nano-composites consisting of wrapped-around single-walled carbon nanotubes to improve performance. The electrode's optimal electrochemical characteristics were achieved by using a concentration of 9 wt% MACNC/CNT nanocomposites. The proposed electrode material for the MACNC-based flexible supercapacitor assembly demonstrates outstanding electrochemical stability and effective electrochemical performance. When tested in a three-electrode cell configuration, it achieves an areal capacitance of 1389.202 mF cm−2 at a current density of 0.02 A cm−2, with 74.6% cyclic retention after 12 000 cycles. This study effectively converted agricultural waste into high-performing supercapacitor electrodes using a simple and cost-efficient method. This innovative design and outstanding electrochemical performance show great promise in using environmentally friendly materials to improve nanocellulose-based sustainable energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信