p-adic 續分數的高度和超越性

IF 1 3区 数学 Q1 MATHEMATICS
Ignazio Longhi, Nadir Murru, Francesco M. Saettone
{"title":"p-adic 續分數的高度和超越性","authors":"Ignazio Longhi, Nadir Murru, Francesco M. Saettone","doi":"10.1007/s10231-024-01476-6","DOIUrl":null,"url":null,"abstract":"<p>Special kinds of continued fractions have been proved to converge to transcendental real numbers by means of the celebrated Subspace Theorem. In this paper we study the analogous <i>p</i>–adic problem. More specifically, we deal with Browkin <i>p</i>–adic continued fractions. First we give some new remarks about the Browkin algorithm in terms of a <i>p</i>–adic Euclidean algorithm. Then, we focus on the heights of some <i>p</i>–adic numbers having a periodic <i>p</i>–adic continued fraction expansion and we obtain some upper bounds. Finally, we exploit these results, together with <i>p</i>–adic Roth-like results, in order to prove the transcendence of three families of <i>p</i>–adic continued fractions.\n</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heights and transcendence of p-adic continued fractions\",\"authors\":\"Ignazio Longhi, Nadir Murru, Francesco M. Saettone\",\"doi\":\"10.1007/s10231-024-01476-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Special kinds of continued fractions have been proved to converge to transcendental real numbers by means of the celebrated Subspace Theorem. In this paper we study the analogous <i>p</i>–adic problem. More specifically, we deal with Browkin <i>p</i>–adic continued fractions. First we give some new remarks about the Browkin algorithm in terms of a <i>p</i>–adic Euclidean algorithm. Then, we focus on the heights of some <i>p</i>–adic numbers having a periodic <i>p</i>–adic continued fraction expansion and we obtain some upper bounds. Finally, we exploit these results, together with <i>p</i>–adic Roth-like results, in order to prove the transcendence of three families of <i>p</i>–adic continued fractions.\\n</p>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10231-024-01476-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01476-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过著名的子空间定理,特殊类型的连续分数已被证明收敛于超越实数。本文将研究类似的 p-adic 问题。更具体地说,我们研究的是布朗金 p-adic 连续分数。首先,我们用 p-adic 欧几里得算法对布朗金算法做一些新的说明。然后,我们重点研究了一些具有周期性 p-adic 连续分数展开的 p-adic 数的高度,并得到了一些上界。最后,我们利用这些结果以及类似 p-adic Roth 的结果,证明了三个 p-adic 连续分数族的超越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heights and transcendence of p-adic continued fractions

Special kinds of continued fractions have been proved to converge to transcendental real numbers by means of the celebrated Subspace Theorem. In this paper we study the analogous p–adic problem. More specifically, we deal with Browkin p–adic continued fractions. First we give some new remarks about the Browkin algorithm in terms of a p–adic Euclidean algorithm. Then, we focus on the heights of some p–adic numbers having a periodic p–adic continued fraction expansion and we obtain some upper bounds. Finally, we exploit these results, together with p–adic Roth-like results, in order to prove the transcendence of three families of p–adic continued fractions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信