{"title":"实还原李群作用多稳性的希尔伯特-蒙福德准则","authors":"Leonardo Biliotti, Oluwagbenga Joshua Windare","doi":"10.1007/s10231-024-01480-w","DOIUrl":null,"url":null,"abstract":"<p>We study a Hilbert–Mumford criterion for polystablility associated with an action of a real reductive Lie group <i>G</i> on a real submanifold <i>X</i> of a Kähler manifold <i>Z</i>. Suppose the action of a compact Lie group with Lie algebra <span>\\(\\mathfrak {u}\\)</span> extends holomorphically to an action of the complexified group <span>\\(U^{\\mathbb {C}}\\)</span> and that the <i>U</i>-action on <i>Z</i> is Hamiltonian. If <span>\\(G\\subset U^{\\mathbb {C}}\\)</span> is compatible, there is a corresponding gradient map <span>\\(\\mu _\\mathfrak {p}: X\\rightarrow \\mathfrak {p}\\)</span>, where <span>\\(\\mathfrak {g}= \\mathfrak {k}\\oplus \\mathfrak {p}\\)</span> is a Cartan decomposition of the Lie algebra of <i>G</i>. Under some mild restrictions on the <i>G</i>-action on <i>X</i>, we characterize which <i>G</i>-orbits in <i>X</i> intersect <span>\\(\\mu _\\mathfrak {p}^{-1}(0)\\)</span> in terms of the maximal weight functions, which we viewed as a collection of maps defined on the boundary at infinity (<span>\\(\\partial _\\infty G/K\\)</span>) of the symmetric space <i>G</i>/<i>K</i>. We also establish the Hilbert–Mumford criterion for polystability of the action of <i>G</i> on measures.</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hilbert–Mumford criterion for polystability for actions of real reductive Lie groups\",\"authors\":\"Leonardo Biliotti, Oluwagbenga Joshua Windare\",\"doi\":\"10.1007/s10231-024-01480-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a Hilbert–Mumford criterion for polystablility associated with an action of a real reductive Lie group <i>G</i> on a real submanifold <i>X</i> of a Kähler manifold <i>Z</i>. Suppose the action of a compact Lie group with Lie algebra <span>\\\\(\\\\mathfrak {u}\\\\)</span> extends holomorphically to an action of the complexified group <span>\\\\(U^{\\\\mathbb {C}}\\\\)</span> and that the <i>U</i>-action on <i>Z</i> is Hamiltonian. If <span>\\\\(G\\\\subset U^{\\\\mathbb {C}}\\\\)</span> is compatible, there is a corresponding gradient map <span>\\\\(\\\\mu _\\\\mathfrak {p}: X\\\\rightarrow \\\\mathfrak {p}\\\\)</span>, where <span>\\\\(\\\\mathfrak {g}= \\\\mathfrak {k}\\\\oplus \\\\mathfrak {p}\\\\)</span> is a Cartan decomposition of the Lie algebra of <i>G</i>. Under some mild restrictions on the <i>G</i>-action on <i>X</i>, we characterize which <i>G</i>-orbits in <i>X</i> intersect <span>\\\\(\\\\mu _\\\\mathfrak {p}^{-1}(0)\\\\)</span> in terms of the maximal weight functions, which we viewed as a collection of maps defined on the boundary at infinity (<span>\\\\(\\\\partial _\\\\infty G/K\\\\)</span>) of the symmetric space <i>G</i>/<i>K</i>. We also establish the Hilbert–Mumford criterion for polystability of the action of <i>G</i> on measures.</p>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10231-024-01480-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01480-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了一个与凯勒流形 Z 的实子流形 X 上的实还原性 Lie 群 G 作用相关的多稳态性的希尔伯特-芒福德判据。假设一个紧凑的 Lie 群的作用与 Lie 代数 \(\mathfrak {u}\) 整体扩展到复化群 \(U^{\mathbb {C}}\) 的作用,并且 Z 上的 U 作用是哈密顿的。如果 \(G 子集 U^{\mathbb {C}}\) 是相容的,那么就有一个相应的梯度映射 \(\mu _\mathfrak {p}: X\rightarrow \mathfrak {p}/),其中 \(\mathfrak {g}= \mathfrak {k}\oplus \mathfrak {p}/)是 G 的李代数的卡坦分解。在对 X 上的 G 作用的一些温和限制下,我们用最大权重函数描述了 X 中哪些 G 轨道与对称空间 G/K 的最大权重函数相交(\mu _\mathfrak {p}^{-1}(0)\) ),我们把这些最大权重函数看作是定义在对称空间 G/K 的无穷边界上的映射集合(\(\partial _\infty G/K/))。我们还建立了 G 对度量作用的多稳定性的希尔伯特-芒福德准则。
A Hilbert–Mumford criterion for polystability for actions of real reductive Lie groups
We study a Hilbert–Mumford criterion for polystablility associated with an action of a real reductive Lie group G on a real submanifold X of a Kähler manifold Z. Suppose the action of a compact Lie group with Lie algebra \(\mathfrak {u}\) extends holomorphically to an action of the complexified group \(U^{\mathbb {C}}\) and that the U-action on Z is Hamiltonian. If \(G\subset U^{\mathbb {C}}\) is compatible, there is a corresponding gradient map \(\mu _\mathfrak {p}: X\rightarrow \mathfrak {p}\), where \(\mathfrak {g}= \mathfrak {k}\oplus \mathfrak {p}\) is a Cartan decomposition of the Lie algebra of G. Under some mild restrictions on the G-action on X, we characterize which G-orbits in X intersect \(\mu _\mathfrak {p}^{-1}(0)\) in terms of the maximal weight functions, which we viewed as a collection of maps defined on the boundary at infinity (\(\partial _\infty G/K\)) of the symmetric space G/K. We also establish the Hilbert–Mumford criterion for polystability of the action of G on measures.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.