{"title":"打破对称结构的硝酸盐还原成氨的电催化剂","authors":"","doi":"10.1039/d4gc02069c","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is a pivotal component for the majority of fertilizers, chemicals, and pharmaceuticals. Its conventional production through the Haber–Bosch process is highly energy-intensive and significantly contributes to CO<sub>2</sub> emissions, thereby exacerbating global warming. In parallel, the overuse of agricultural fertilizers and the inadequate industrial wastewater management cause the heavy nitrate (NO<sub>3</sub><sup>−</sup>) pollution which poses huge environmental and health hazards to human beings. In an effort to address these challenges, scientists have been exploring more sustainable methods of ammonia synthesis and strategies to mitigate nitrate pollution. Among these, the electrocatalytic reduction of nitrates to ammonia/ammonium (NO<sub>3</sub>RR) presents a promising solution. This innovative approach not only reduces the environmental footprint of ammonia production by operating under ambient conditions but also contributes to the purification of water bodies by lowering nitrate levels. This review intricately explores the complexities involved in the electrocatalytic reduction of nitrates to ammonia, shedding light on the nuanced mechanisms underlying the process and elucidating the importance of symmetry-breaking structures. It particularly underscores the pivotal role played by various symmetry-breaking structures in catalysts, which serve to disrupt and invigorate the reaction environment, thus enhancing the efficiency of the electrocatalytic process. In culmination, we offer a comprehensive summary of the advancements in the development of catalysts featuring symmetry-breaking structures, providing insights and forward-looking recommendations for the future engineering of broadly applicable symmetry-breaking structure catalysts.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 14","pages":"Pages 8145-8160"},"PeriodicalIF":9.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry-breaking structure electrocatalysts for nitrate reduction to ammonia\",\"authors\":\"\",\"doi\":\"10.1039/d4gc02069c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia (NH<sub>3</sub>) is a pivotal component for the majority of fertilizers, chemicals, and pharmaceuticals. Its conventional production through the Haber–Bosch process is highly energy-intensive and significantly contributes to CO<sub>2</sub> emissions, thereby exacerbating global warming. In parallel, the overuse of agricultural fertilizers and the inadequate industrial wastewater management cause the heavy nitrate (NO<sub>3</sub><sup>−</sup>) pollution which poses huge environmental and health hazards to human beings. In an effort to address these challenges, scientists have been exploring more sustainable methods of ammonia synthesis and strategies to mitigate nitrate pollution. Among these, the electrocatalytic reduction of nitrates to ammonia/ammonium (NO<sub>3</sub>RR) presents a promising solution. This innovative approach not only reduces the environmental footprint of ammonia production by operating under ambient conditions but also contributes to the purification of water bodies by lowering nitrate levels. This review intricately explores the complexities involved in the electrocatalytic reduction of nitrates to ammonia, shedding light on the nuanced mechanisms underlying the process and elucidating the importance of symmetry-breaking structures. It particularly underscores the pivotal role played by various symmetry-breaking structures in catalysts, which serve to disrupt and invigorate the reaction environment, thus enhancing the efficiency of the electrocatalytic process. In culmination, we offer a comprehensive summary of the advancements in the development of catalysts featuring symmetry-breaking structures, providing insights and forward-looking recommendations for the future engineering of broadly applicable symmetry-breaking structure catalysts.</p></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"26 14\",\"pages\":\"Pages 8145-8160\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224006368\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224006368","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Symmetry-breaking structure electrocatalysts for nitrate reduction to ammonia
Ammonia (NH3) is a pivotal component for the majority of fertilizers, chemicals, and pharmaceuticals. Its conventional production through the Haber–Bosch process is highly energy-intensive and significantly contributes to CO2 emissions, thereby exacerbating global warming. In parallel, the overuse of agricultural fertilizers and the inadequate industrial wastewater management cause the heavy nitrate (NO3−) pollution which poses huge environmental and health hazards to human beings. In an effort to address these challenges, scientists have been exploring more sustainable methods of ammonia synthesis and strategies to mitigate nitrate pollution. Among these, the electrocatalytic reduction of nitrates to ammonia/ammonium (NO3RR) presents a promising solution. This innovative approach not only reduces the environmental footprint of ammonia production by operating under ambient conditions but also contributes to the purification of water bodies by lowering nitrate levels. This review intricately explores the complexities involved in the electrocatalytic reduction of nitrates to ammonia, shedding light on the nuanced mechanisms underlying the process and elucidating the importance of symmetry-breaking structures. It particularly underscores the pivotal role played by various symmetry-breaking structures in catalysts, which serve to disrupt and invigorate the reaction environment, thus enhancing the efficiency of the electrocatalytic process. In culmination, we offer a comprehensive summary of the advancements in the development of catalysts featuring symmetry-breaking structures, providing insights and forward-looking recommendations for the future engineering of broadly applicable symmetry-breaking structure catalysts.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.