用于人机交互应用的仿真辅助点云分割神经网络

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Jingxin Lin, Kaifan Zhong, Tao Gong, Xianmin Zhang, Nianfeng Wang
{"title":"用于人机交互应用的仿真辅助点云分割神经网络","authors":"Jingxin Lin,&nbsp;Kaifan Zhong,&nbsp;Tao Gong,&nbsp;Xianmin Zhang,&nbsp;Nianfeng Wang","doi":"10.1002/rob.22385","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of industrial automation, the frequency of human–robot interaction (HRI) has significantly increased, necessitating a paramount focus on ensuring human safety throughout this process. This paper proposes a simulation-assisted neural network for point cloud segmentation in HRI, specifically distinguishing humans from various surrounding objects. During HRI, readily accessible prior information, such as the positions of background objects and the robot's posture, can generate a simulated point cloud and assist in point cloud segmentation. The simulation-assisted neural network utilizes simulated and actual point clouds as dual inputs. A simulation-assisted edge convolution module in the network facilitates the combination of features from the actual and simulated point clouds, updating the features of the actual point cloud to incorporate simulation information. Experiments of point cloud segmentation in industrial environments verify the efficacy of the proposed method.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2689-2704"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation-assisted point cloud segmentation neural network for human–robot interaction applications\",\"authors\":\"Jingxin Lin,&nbsp;Kaifan Zhong,&nbsp;Tao Gong,&nbsp;Xianmin Zhang,&nbsp;Nianfeng Wang\",\"doi\":\"10.1002/rob.22385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the advancement of industrial automation, the frequency of human–robot interaction (HRI) has significantly increased, necessitating a paramount focus on ensuring human safety throughout this process. This paper proposes a simulation-assisted neural network for point cloud segmentation in HRI, specifically distinguishing humans from various surrounding objects. During HRI, readily accessible prior information, such as the positions of background objects and the robot's posture, can generate a simulated point cloud and assist in point cloud segmentation. The simulation-assisted neural network utilizes simulated and actual point clouds as dual inputs. A simulation-assisted edge convolution module in the network facilitates the combination of features from the actual and simulated point clouds, updating the features of the actual point cloud to incorporate simulation information. Experiments of point cloud segmentation in industrial environments verify the efficacy of the proposed method.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 8\",\"pages\":\"2689-2704\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22385\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22385","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

随着工业自动化的发展,人机交互(HRI)的频率显著增加,因此在整个过程中必须高度重视确保人身安全。本文提出了一种仿真辅助神经网络,用于 HRI 中的点云分割,特别是将人与周围的各种物体区分开来。在人机交互过程中,背景物体的位置和机器人的姿态等容易获取的先验信息可以生成模拟点云,帮助进行点云分割。模拟辅助神经网络利用模拟点云和实际点云作为双重输入。网络中的仿真辅助边缘卷积模块有助于将实际点云和模拟点云的特征结合起来,更新实际点云的特征以纳入仿真信息。在工业环境中进行的点云分割实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simulation-assisted point cloud segmentation neural network for human–robot interaction applications

With the advancement of industrial automation, the frequency of human–robot interaction (HRI) has significantly increased, necessitating a paramount focus on ensuring human safety throughout this process. This paper proposes a simulation-assisted neural network for point cloud segmentation in HRI, specifically distinguishing humans from various surrounding objects. During HRI, readily accessible prior information, such as the positions of background objects and the robot's posture, can generate a simulated point cloud and assist in point cloud segmentation. The simulation-assisted neural network utilizes simulated and actual point clouds as dual inputs. A simulation-assisted edge convolution module in the network facilitates the combination of features from the actual and simulated point clouds, updating the features of the actual point cloud to incorporate simulation information. Experiments of point cloud segmentation in industrial environments verify the efficacy of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信