{"title":"为双轮水稻插秧机开发基于 VR/AR 的远程控制系统并进行实地评估","authors":"Shiv Kumar Lohan, Mahesh Kumar Narang, Parmar Raghuvirsinh, Santosh Kumar, Lakhwinder Pal Singh","doi":"10.1002/rob.22389","DOIUrl":null,"url":null,"abstract":"<p>Operating a two-wheel paddy transplanter traditionally poses physical strain and cognitive workload challenges for farm workers, especially during headland turns. This study introduces a virtual reality (VR)/augmented reality (AR)based remote-control system for a two-wheel paddy transplanter to resolve these issues. The system replaces manual controls with VR interfaces, integrating gear motors and an electronic control unit. Front and rear-view cameras provide real-time field perception on light-emitting diode screens, displaying path trajectories via an autopilot controller and real-time kinematic global navigation satellite systems module. Human operators manipulate the machine using a hand-held remote controller while observing live camera feeds and path navigation trajectories. The study found that forward speed necessitated optimization within manageable limits of 1.75–2.00 km h<sup>−</sup><sup>1</sup> for walk-behind types and 2.00–2.25 km h<sup>−</sup><sup>1</sup> for remote-controlled systems. While higher speeds enhanced field capacity by 11.67%–12.95%, they also resulted in 0.74%–1.17% lower field efficiency. Additionally, Operators' physiological workload analysis revealed significant differences between walk-behind and remotely controlled operators. Significant differences in energy expenditure rate (EER) were observed between walk-behind and remote-controlled paddy transplanters, with EER values ranging from 8.20 ± 0.80 to 27.67 ± 0.45 kJ min⁻¹ and 7.56 ± 0.55 to 9.72 ± 0.37 kJ min⁻¹, respectively (<i>p</i> < 0.05). Overall, the VR-based remote-control system shows promise in enhancing operational efficiency and reducing physical strain in paddy transplanting operations.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2732-2748"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and field evaluation of a VR/AR-based remotely controlled system for a two-wheel paddy transplanter\",\"authors\":\"Shiv Kumar Lohan, Mahesh Kumar Narang, Parmar Raghuvirsinh, Santosh Kumar, Lakhwinder Pal Singh\",\"doi\":\"10.1002/rob.22389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Operating a two-wheel paddy transplanter traditionally poses physical strain and cognitive workload challenges for farm workers, especially during headland turns. This study introduces a virtual reality (VR)/augmented reality (AR)based remote-control system for a two-wheel paddy transplanter to resolve these issues. The system replaces manual controls with VR interfaces, integrating gear motors and an electronic control unit. Front and rear-view cameras provide real-time field perception on light-emitting diode screens, displaying path trajectories via an autopilot controller and real-time kinematic global navigation satellite systems module. Human operators manipulate the machine using a hand-held remote controller while observing live camera feeds and path navigation trajectories. The study found that forward speed necessitated optimization within manageable limits of 1.75–2.00 km h<sup>−</sup><sup>1</sup> for walk-behind types and 2.00–2.25 km h<sup>−</sup><sup>1</sup> for remote-controlled systems. While higher speeds enhanced field capacity by 11.67%–12.95%, they also resulted in 0.74%–1.17% lower field efficiency. Additionally, Operators' physiological workload analysis revealed significant differences between walk-behind and remotely controlled operators. Significant differences in energy expenditure rate (EER) were observed between walk-behind and remote-controlled paddy transplanters, with EER values ranging from 8.20 ± 0.80 to 27.67 ± 0.45 kJ min⁻¹ and 7.56 ± 0.55 to 9.72 ± 0.37 kJ min⁻¹, respectively (<i>p</i> < 0.05). Overall, the VR-based remote-control system shows promise in enhancing operational efficiency and reducing physical strain in paddy transplanting operations.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 8\",\"pages\":\"2732-2748\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22389\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22389","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Development and field evaluation of a VR/AR-based remotely controlled system for a two-wheel paddy transplanter
Operating a two-wheel paddy transplanter traditionally poses physical strain and cognitive workload challenges for farm workers, especially during headland turns. This study introduces a virtual reality (VR)/augmented reality (AR)based remote-control system for a two-wheel paddy transplanter to resolve these issues. The system replaces manual controls with VR interfaces, integrating gear motors and an electronic control unit. Front and rear-view cameras provide real-time field perception on light-emitting diode screens, displaying path trajectories via an autopilot controller and real-time kinematic global navigation satellite systems module. Human operators manipulate the machine using a hand-held remote controller while observing live camera feeds and path navigation trajectories. The study found that forward speed necessitated optimization within manageable limits of 1.75–2.00 km h−1 for walk-behind types and 2.00–2.25 km h−1 for remote-controlled systems. While higher speeds enhanced field capacity by 11.67%–12.95%, they also resulted in 0.74%–1.17% lower field efficiency. Additionally, Operators' physiological workload analysis revealed significant differences between walk-behind and remotely controlled operators. Significant differences in energy expenditure rate (EER) were observed between walk-behind and remote-controlled paddy transplanters, with EER values ranging from 8.20 ± 0.80 to 27.67 ± 0.45 kJ min⁻¹ and 7.56 ± 0.55 to 9.72 ± 0.37 kJ min⁻¹, respectively (p < 0.05). Overall, the VR-based remote-control system shows promise in enhancing operational efficiency and reducing physical strain in paddy transplanting operations.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.