{"title":"制备具有更强可见光光催化活性的新型镍铁钛过氧化物复合材料","authors":"Byung-Geon Park","doi":"10.1007/s11243-024-00595-6","DOIUrl":null,"url":null,"abstract":"<p>In this study, a nickel iron-titanate (NiFeTiO<sub>3</sub>) perovskite composite was prepared newly and its photocatalytic activity was evaluated under visible light irradiation. The composite material was prepared by a synthetic method combining the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO<sub>3</sub> perovskites were investigated. In this study, a newly prepared NiFeTiO<sub>3</sub> perovskite composite was evaluated for its photocatalytic activity under visible light irradiation. The composite material was synthesized using a combination of the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO<sub>3</sub> perovskites were investigated. The perovskite composites with the NiFeTiO<sub>3</sub> structure had excellent absorption ability for visible light above 800 nm. Its bandgap energy was found to be approximately 1.8 eV. The photocatalytic activity of the NiFeTiO<sub>3</sub> composite was evaluated under visible light irradiation. The NiFeTiO<sub>3</sub> had superior visible light absorption ability compared to NiTiO<sub>3</sub>. It had excellent decomposition performance for methylene blue and formaldehyde. In addition, the photocatalytic activity for sterilizing pathogenic bacteria was much higher than that of NiTiO<sub>3</sub> perovskite. In the water splitting by solar energy, the NiFeTiO<sub>3</sub> catalysts produced hydrogen through a photocatalytic decomposition reaction. The NiFeTiO<sub>3</sub> composite was considered a perovskite composite with significantly improved photocatalytic function due to its high sensitivity to visible light.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a new nickel iron-titanate perovskite composite with enhanced visible light photocatalytic activity\",\"authors\":\"Byung-Geon Park\",\"doi\":\"10.1007/s11243-024-00595-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a nickel iron-titanate (NiFeTiO<sub>3</sub>) perovskite composite was prepared newly and its photocatalytic activity was evaluated under visible light irradiation. The composite material was prepared by a synthetic method combining the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO<sub>3</sub> perovskites were investigated. In this study, a newly prepared NiFeTiO<sub>3</sub> perovskite composite was evaluated for its photocatalytic activity under visible light irradiation. The composite material was synthesized using a combination of the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO<sub>3</sub> perovskites were investigated. The perovskite composites with the NiFeTiO<sub>3</sub> structure had excellent absorption ability for visible light above 800 nm. Its bandgap energy was found to be approximately 1.8 eV. The photocatalytic activity of the NiFeTiO<sub>3</sub> composite was evaluated under visible light irradiation. The NiFeTiO<sub>3</sub> had superior visible light absorption ability compared to NiTiO<sub>3</sub>. It had excellent decomposition performance for methylene blue and formaldehyde. In addition, the photocatalytic activity for sterilizing pathogenic bacteria was much higher than that of NiTiO<sub>3</sub> perovskite. In the water splitting by solar energy, the NiFeTiO<sub>3</sub> catalysts produced hydrogen through a photocatalytic decomposition reaction. The NiFeTiO<sub>3</sub> composite was considered a perovskite composite with significantly improved photocatalytic function due to its high sensitivity to visible light.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11243-024-00595-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11243-024-00595-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of a new nickel iron-titanate perovskite composite with enhanced visible light photocatalytic activity
In this study, a nickel iron-titanate (NiFeTiO3) perovskite composite was prepared newly and its photocatalytic activity was evaluated under visible light irradiation. The composite material was prepared by a synthetic method combining the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO3 perovskites were investigated. In this study, a newly prepared NiFeTiO3 perovskite composite was evaluated for its photocatalytic activity under visible light irradiation. The composite material was synthesized using a combination of the sol–gel method and the solvothermal method. The physicochemical and optical properties of the prepared NiFeTiO3 perovskites were investigated. The perovskite composites with the NiFeTiO3 structure had excellent absorption ability for visible light above 800 nm. Its bandgap energy was found to be approximately 1.8 eV. The photocatalytic activity of the NiFeTiO3 composite was evaluated under visible light irradiation. The NiFeTiO3 had superior visible light absorption ability compared to NiTiO3. It had excellent decomposition performance for methylene blue and formaldehyde. In addition, the photocatalytic activity for sterilizing pathogenic bacteria was much higher than that of NiTiO3 perovskite. In the water splitting by solar energy, the NiFeTiO3 catalysts produced hydrogen through a photocatalytic decomposition reaction. The NiFeTiO3 composite was considered a perovskite composite with significantly improved photocatalytic function due to its high sensitivity to visible light.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.