Christopher L. Rom, Rebecca W. Smaha, Shaun O’Donnell, Sita Dugu, Sage R. Bauers
{"title":"用于电动汽车驱动电机的新兴磁性材料","authors":"Christopher L. Rom, Rebecca W. Smaha, Shaun O’Donnell, Sita Dugu, Sage R. Bauers","doi":"10.1557/s43577-024-00743-4","DOIUrl":null,"url":null,"abstract":"<p>Increasing demand for electric vehicles (EVs) is increasing demand for the permanent magnets that drive their motors, as approximately 80% of modern EV drivetrains rely on high-performance permanent magnets to convert electricity into torque. In turn, these high-performance permanent magnets rely on rare earth elements for their magnetic properties. These elements are “critical” (i.e., at risk of limiting the growth of renewable energy technologies such as EVs), which motivates an exploration for alternative materials. In this article, we overview the relevant fundamentals of permanent magnets, describe commercialized and emerging materials, and add perspective on future areas of research. Currently, the leading magnetic material for EV motors is Nd<sub>2</sub>Fe<sub>14</sub>B, with samarium-cobalt compounds (SmCo<sub>5</sub> and Sm<sub>2</sub>Co<sub>17</sub>) providing the only high-performing commercialized alternative. Emerging materials that address criticality concerns include Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub>, Fe<sub>16</sub>N<sub>2</sub>, and the L1<sub>0</sub> structure of FeNi, which use lower cost elements that produce similar magnetic properties. However, these temperature-sensitive materials are incompatible with current metallurgical processing techniques. We provide perspective on how advances in low-temperature synthesis and processing science could unlock new classes of high-performing magnetic materials for a paradigm shift beyond rare earth-based magnets. In doing so, we explore the question: What magnetic materials will drive future EVs?</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging magnetic materials for electric vehicle drive motors\",\"authors\":\"Christopher L. Rom, Rebecca W. Smaha, Shaun O’Donnell, Sita Dugu, Sage R. Bauers\",\"doi\":\"10.1557/s43577-024-00743-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing demand for electric vehicles (EVs) is increasing demand for the permanent magnets that drive their motors, as approximately 80% of modern EV drivetrains rely on high-performance permanent magnets to convert electricity into torque. In turn, these high-performance permanent magnets rely on rare earth elements for their magnetic properties. These elements are “critical” (i.e., at risk of limiting the growth of renewable energy technologies such as EVs), which motivates an exploration for alternative materials. In this article, we overview the relevant fundamentals of permanent magnets, describe commercialized and emerging materials, and add perspective on future areas of research. Currently, the leading magnetic material for EV motors is Nd<sub>2</sub>Fe<sub>14</sub>B, with samarium-cobalt compounds (SmCo<sub>5</sub> and Sm<sub>2</sub>Co<sub>17</sub>) providing the only high-performing commercialized alternative. Emerging materials that address criticality concerns include Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub>, Fe<sub>16</sub>N<sub>2</sub>, and the L1<sub>0</sub> structure of FeNi, which use lower cost elements that produce similar magnetic properties. However, these temperature-sensitive materials are incompatible with current metallurgical processing techniques. We provide perspective on how advances in low-temperature synthesis and processing science could unlock new classes of high-performing magnetic materials for a paradigm shift beyond rare earth-based magnets. In doing so, we explore the question: What magnetic materials will drive future EVs?</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00743-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00743-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging magnetic materials for electric vehicle drive motors
Increasing demand for electric vehicles (EVs) is increasing demand for the permanent magnets that drive their motors, as approximately 80% of modern EV drivetrains rely on high-performance permanent magnets to convert electricity into torque. In turn, these high-performance permanent magnets rely on rare earth elements for their magnetic properties. These elements are “critical” (i.e., at risk of limiting the growth of renewable energy technologies such as EVs), which motivates an exploration for alternative materials. In this article, we overview the relevant fundamentals of permanent magnets, describe commercialized and emerging materials, and add perspective on future areas of research. Currently, the leading magnetic material for EV motors is Nd2Fe14B, with samarium-cobalt compounds (SmCo5 and Sm2Co17) providing the only high-performing commercialized alternative. Emerging materials that address criticality concerns include Sm2Fe17N3, Fe16N2, and the L10 structure of FeNi, which use lower cost elements that produce similar magnetic properties. However, these temperature-sensitive materials are incompatible with current metallurgical processing techniques. We provide perspective on how advances in low-temperature synthesis and processing science could unlock new classes of high-performing magnetic materials for a paradigm shift beyond rare earth-based magnets. In doing so, we explore the question: What magnetic materials will drive future EVs?
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.