SrMoO3 薄膜的高紫外线透明导电性

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xiaomin Jia, Yanbin Chen, Ce-Wen Nan, Jing Ma* and Chonglin Chen*, 
{"title":"SrMoO3 薄膜的高紫外线透明导电性","authors":"Xiaomin Jia,&nbsp;Yanbin Chen,&nbsp;Ce-Wen Nan,&nbsp;Jing Ma* and Chonglin Chen*,&nbsp;","doi":"10.1021/acs.cgd.3c01237","DOIUrl":null,"url":null,"abstract":"<p >The perovskite oxide SrMoO<sub>3</sub> has attracted significant attention for its potential applications in ultraviolet (UV) transparent conductors. Thus far, synthesizing high-quality epitaxial SrMoO<sub>3</sub> thin films by pulsed laser deposition (PLD) is usually under highly reducing (Ar or Ar-H<sub>2</sub> gas mixture) atmospheres. Here, we grew SrMoO<sub>3</sub> epitaxial films using the PLD technique at a base pressure below 1 × 10<sup>–5</sup> Pa without any gas supply to optimize their optical and electrical properties. By depositing these films on the (001) SrTiO<sub>3</sub>, (001) LaAlO<sub>3</sub>, and (001) MgO substrates, the as-grown SrMoO<sub>3</sub> films, with a nominal lattice mismatch in the range of −4.8 to +5.7% and a thickness of 20–60 nm, show prominent transparent conductivity in both visible and UV wavelengths. All the films exhibit metallic-like conductivity, with a room-temperature resistivity varying from 10 to 60 μΩ·cm. The resistivity increases with decreasing thickness. Notably, we can achieve extremely high transmittance, exceeding 80% for wavelengths ranging from 300 to 500 nm, and a low resistivity of approximately 20 μΩ·cm in SrMoO<sub>3</sub> films as thin as 20 nm. The excellent UV transparent conducting properties that are insensitive to the substrate type and film thickness make SrMoO<sub>3</sub> films a promising material for various photoelectronic devices and energy-harvesting applications.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High UV Transparent Conductivity of SrMoO3 Thin Films\",\"authors\":\"Xiaomin Jia,&nbsp;Yanbin Chen,&nbsp;Ce-Wen Nan,&nbsp;Jing Ma* and Chonglin Chen*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.3c01237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The perovskite oxide SrMoO<sub>3</sub> has attracted significant attention for its potential applications in ultraviolet (UV) transparent conductors. Thus far, synthesizing high-quality epitaxial SrMoO<sub>3</sub> thin films by pulsed laser deposition (PLD) is usually under highly reducing (Ar or Ar-H<sub>2</sub> gas mixture) atmospheres. Here, we grew SrMoO<sub>3</sub> epitaxial films using the PLD technique at a base pressure below 1 × 10<sup>–5</sup> Pa without any gas supply to optimize their optical and electrical properties. By depositing these films on the (001) SrTiO<sub>3</sub>, (001) LaAlO<sub>3</sub>, and (001) MgO substrates, the as-grown SrMoO<sub>3</sub> films, with a nominal lattice mismatch in the range of −4.8 to +5.7% and a thickness of 20–60 nm, show prominent transparent conductivity in both visible and UV wavelengths. All the films exhibit metallic-like conductivity, with a room-temperature resistivity varying from 10 to 60 μΩ·cm. The resistivity increases with decreasing thickness. Notably, we can achieve extremely high transmittance, exceeding 80% for wavelengths ranging from 300 to 500 nm, and a low resistivity of approximately 20 μΩ·cm in SrMoO<sub>3</sub> films as thin as 20 nm. The excellent UV transparent conducting properties that are insensitive to the substrate type and film thickness make SrMoO<sub>3</sub> films a promising material for various photoelectronic devices and energy-harvesting applications.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01237\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c01237","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物 SrMoO3 因其在紫外线(UV)透明导体中的潜在应用而备受关注。迄今为止,通过脉冲激光沉积(PLD)合成高质量的 SrMoO3 外延薄膜通常是在高还原性(氩气或氩气-H2 混合气体)气氛下进行的。在这里,我们使用 PLD 技术在基压低于 1 × 10-5 Pa 的条件下生长 SrMoO3 外延薄膜,无需任何气体供应,以优化其光学和电学特性。通过在 (001) SrTiO3、(001) LaAlO3 和 (001) MgO 基底上沉积这些薄膜,名义晶格失配范围为 -4.8% 至 +5.7%、厚度为 20-60 纳米的 SrMoO3 薄膜在可见光和紫外线波长下都显示出突出的透明导电性。所有薄膜都具有类似金属的导电性,室温电阻率在 10 到 60 μΩ-cm 之间。电阻率随厚度的减小而增大。值得注意的是,在波长为 300 至 500 纳米的 SrMoO3 薄膜中,我们可以获得极高的透射率(超过 80%)和低电阻率(约 20 μΩ-cm)。SrMoO3 薄膜具有优异的紫外线透明导电性能,对基底类型和薄膜厚度不敏感,因此有望成为各种光电子器件和能量收集应用的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High UV Transparent Conductivity of SrMoO3 Thin Films

High UV Transparent Conductivity of SrMoO3 Thin Films

High UV Transparent Conductivity of SrMoO3 Thin Films

The perovskite oxide SrMoO3 has attracted significant attention for its potential applications in ultraviolet (UV) transparent conductors. Thus far, synthesizing high-quality epitaxial SrMoO3 thin films by pulsed laser deposition (PLD) is usually under highly reducing (Ar or Ar-H2 gas mixture) atmospheres. Here, we grew SrMoO3 epitaxial films using the PLD technique at a base pressure below 1 × 10–5 Pa without any gas supply to optimize their optical and electrical properties. By depositing these films on the (001) SrTiO3, (001) LaAlO3, and (001) MgO substrates, the as-grown SrMoO3 films, with a nominal lattice mismatch in the range of −4.8 to +5.7% and a thickness of 20–60 nm, show prominent transparent conductivity in both visible and UV wavelengths. All the films exhibit metallic-like conductivity, with a room-temperature resistivity varying from 10 to 60 μΩ·cm. The resistivity increases with decreasing thickness. Notably, we can achieve extremely high transmittance, exceeding 80% for wavelengths ranging from 300 to 500 nm, and a low resistivity of approximately 20 μΩ·cm in SrMoO3 films as thin as 20 nm. The excellent UV transparent conducting properties that are insensitive to the substrate type and film thickness make SrMoO3 films a promising material for various photoelectronic devices and energy-harvesting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信