利用深度学习探索印度股市的行业盈利能力

Jaydip Sen, Hetvi Waghela, Sneha Rakshit
{"title":"利用深度学习探索印度股市的行业盈利能力","authors":"Jaydip Sen, Hetvi Waghela, Sneha Rakshit","doi":"arxiv-2407.01572","DOIUrl":null,"url":null,"abstract":"This paper explores using a deep learning Long Short-Term Memory (LSTM) model\nfor accurate stock price prediction and its implications for portfolio design.\nDespite the efficient market hypothesis suggesting that predicting stock prices\nis impossible, recent research has shown the potential of advanced algorithms\nand predictive models. The study builds upon existing literature on stock price\nprediction methods, emphasizing the shift toward machine learning and deep\nlearning approaches. Using historical stock prices of 180 stocks across 18\nsectors listed on the NSE, India, the LSTM model predicts future prices. These\npredictions guide buy/sell decisions for each stock and analyze sector\nprofitability. The study's main contributions are threefold: introducing an\noptimized LSTM model for robust portfolio design, utilizing LSTM predictions\nfor buy/sell transactions, and insights into sector profitability and\nvolatility. Results demonstrate the efficacy of the LSTM model in accurately\npredicting stock prices and informing investment decisions. By comparing sector\nprofitability and prediction accuracy, the work provides valuable insights into\nthe dynamics of the current financial markets in India.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning\",\"authors\":\"Jaydip Sen, Hetvi Waghela, Sneha Rakshit\",\"doi\":\"arxiv-2407.01572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores using a deep learning Long Short-Term Memory (LSTM) model\\nfor accurate stock price prediction and its implications for portfolio design.\\nDespite the efficient market hypothesis suggesting that predicting stock prices\\nis impossible, recent research has shown the potential of advanced algorithms\\nand predictive models. The study builds upon existing literature on stock price\\nprediction methods, emphasizing the shift toward machine learning and deep\\nlearning approaches. Using historical stock prices of 180 stocks across 18\\nsectors listed on the NSE, India, the LSTM model predicts future prices. These\\npredictions guide buy/sell decisions for each stock and analyze sector\\nprofitability. The study's main contributions are threefold: introducing an\\noptimized LSTM model for robust portfolio design, utilizing LSTM predictions\\nfor buy/sell transactions, and insights into sector profitability and\\nvolatility. Results demonstrate the efficacy of the LSTM model in accurately\\npredicting stock prices and informing investment decisions. By comparing sector\\nprofitability and prediction accuracy, the work provides valuable insights into\\nthe dynamics of the current financial markets in India.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管有效市场假说认为预测股票价格是不可能的,但最近的研究显示了先进算法和预测模型的潜力。本研究以现有的股票价格预测方法文献为基础,强调向机器学习和深度学习方法的转变。利用在印度 NSE 上市的 18 个行业 180 只股票的历史股价,LSTM 模型预测了未来价格。这些预测为每只股票的买入/卖出决策提供指导,并分析行业盈利能力。该研究的主要贡献有三个方面:为稳健的投资组合设计引入优化的 LSTM 模型;利用 LSTM 预测进行买卖交易;深入分析行业盈利能力和波动性。结果证明了 LSTM 模型在准确预测股票价格和为投资决策提供信息方面的功效。通过比较行业盈利能力和预测准确性,这项工作为了解印度当前金融市场的动态提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning
This paper explores using a deep learning Long Short-Term Memory (LSTM) model for accurate stock price prediction and its implications for portfolio design. Despite the efficient market hypothesis suggesting that predicting stock prices is impossible, recent research has shown the potential of advanced algorithms and predictive models. The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches. Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices. These predictions guide buy/sell decisions for each stock and analyze sector profitability. The study's main contributions are threefold: introducing an optimized LSTM model for robust portfolio design, utilizing LSTM predictions for buy/sell transactions, and insights into sector profitability and volatility. Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions. By comparing sector profitability and prediction accuracy, the work provides valuable insights into the dynamics of the current financial markets in India.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信