{"title":"优化 $$\\lambda$$ -SQUID 的设计考虑因素","authors":"Constantin Schuster, Sebastian Kempf","doi":"10.1007/s10909-024-03180-4","DOIUrl":null,"url":null,"abstract":"<p>Cryogenic microcalorimeters are key tools for high-resolution X-ray spectroscopy due to their excellent energy resolution and quantum efficiency close to 100%. Multiple types of microcalorimeters exist, some of which have already proven outstanding performance. Nevertheless, they cannot yet compete with cutting-edge grating or crystal spectrometers. For this reason, novel microcalorimeter concepts are continuously developed. One such concept is based on the strong temperature dependence of the magnetic penetration depth of a superconductor operated close to its transition temperature. This so-called <span>\\(\\lambda\\)</span>-SQUID provides an in-situ tunable gain and promises to reach sub-eV energy resolution. Here, we present some design considerations with respect to the optimization of such a detector that are derived by analytic means. We particularly show that for this detector concept the heat capacity of the sensor should match the heat capacity of the absorber.</p>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Considerations for the Optimization of $$\\\\lambda$$ -SQUIDs\",\"authors\":\"Constantin Schuster, Sebastian Kempf\",\"doi\":\"10.1007/s10909-024-03180-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cryogenic microcalorimeters are key tools for high-resolution X-ray spectroscopy due to their excellent energy resolution and quantum efficiency close to 100%. Multiple types of microcalorimeters exist, some of which have already proven outstanding performance. Nevertheless, they cannot yet compete with cutting-edge grating or crystal spectrometers. For this reason, novel microcalorimeter concepts are continuously developed. One such concept is based on the strong temperature dependence of the magnetic penetration depth of a superconductor operated close to its transition temperature. This so-called <span>\\\\(\\\\lambda\\\\)</span>-SQUID provides an in-situ tunable gain and promises to reach sub-eV energy resolution. Here, we present some design considerations with respect to the optimization of such a detector that are derived by analytic means. We particularly show that for this detector concept the heat capacity of the sensor should match the heat capacity of the absorber.</p>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s10909-024-03180-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10909-024-03180-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
低温微量热仪具有出色的能量分辨率和接近 100% 的量子效率,是进行高分辨率 X 射线光谱分析的关键工具。目前已有多种类型的微量热仪,其中一些已被证明具有出色的性能。然而,它们还无法与最先进的光栅或晶体光谱仪相媲美。因此,新型微量热仪的概念不断被开发出来。其中一个概念是基于超导体的磁穿透深度在接近其转变温度时的强温度依赖性。这种所谓的 \(\lambda\)-SQUID 提供了原位可调增益,并有望达到亚电子伏特能量分辨率。在这里,我们介绍了通过分析手段得出的有关优化这种探测器的一些设计考虑因素。我们特别指出,对于这种探测器概念,传感器的热容量应与吸收器的热容量相匹配。
Design Considerations for the Optimization of $$\lambda$$ -SQUIDs
Cryogenic microcalorimeters are key tools for high-resolution X-ray spectroscopy due to their excellent energy resolution and quantum efficiency close to 100%. Multiple types of microcalorimeters exist, some of which have already proven outstanding performance. Nevertheless, they cannot yet compete with cutting-edge grating or crystal spectrometers. For this reason, novel microcalorimeter concepts are continuously developed. One such concept is based on the strong temperature dependence of the magnetic penetration depth of a superconductor operated close to its transition temperature. This so-called \(\lambda\)-SQUID provides an in-situ tunable gain and promises to reach sub-eV energy resolution. Here, we present some design considerations with respect to the optimization of such a detector that are derived by analytic means. We particularly show that for this detector concept the heat capacity of the sensor should match the heat capacity of the absorber.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.