新型高熵合金(NbTi)$_{0.67}$$(MoHfV)$_{0.33}$$的超导性

Wojciech Nowak, Bartosz Rusin, Michał Babij, Rafał Topolnicki, Tomasz Ossowski, Adam Pikul, Rafał Idczak
{"title":"新型高熵合金(NbTi)$_{0.67}$$(MoHfV)$_{0.33}$$的超导性","authors":"Wojciech Nowak, Bartosz Rusin, Michał Babij, Rafał Topolnicki, Tomasz Ossowski, Adam Pikul, Rafał Idczak","doi":"10.1007/s11661-024-07488-4","DOIUrl":null,"url":null,"abstract":"<p>The structural and superconducting properties of a new niobium- and titanium-rich high-entropy alloy (NbTi)<span>\\(_{\\text {0.67}}\\)</span>(MoHfV)<span>\\(_{\\text {0.33}}\\)</span> were determined. The alloy was synthesized by arc melting and its physical properties were characterized by means of X-ray powder diffraction, energy dispersive X-ray spectroscopy, magnetization, electrical resistivity and specific heat measurements. Experimental data revealed that the (NbTi)<span>\\(_{\\text {0.67}}\\)</span>(MoHfV)<span>\\(_{\\text {0.33}}\\)</span> crystalizes in body-centered cubic structure and exhibits type-II superconductivity below about 5 K. In addition, electronic structure calculations were performed using the Density Functional Theory (DFT) method. Their results suggest that in case of HEAs, the influence of the local atomic configuration on their electronic structure in the energy region close to <i>E</i><span>\\(_{\\mathrm {\\text {F}}}\\)</span> is rather small or even negligible.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconductivity in a New High-Entropy Alloy (NbTi) $$_{0.67}$$ (MoHfV) $$_{0.33}$$\",\"authors\":\"Wojciech Nowak, Bartosz Rusin, Michał Babij, Rafał Topolnicki, Tomasz Ossowski, Adam Pikul, Rafał Idczak\",\"doi\":\"10.1007/s11661-024-07488-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structural and superconducting properties of a new niobium- and titanium-rich high-entropy alloy (NbTi)<span>\\\\(_{\\\\text {0.67}}\\\\)</span>(MoHfV)<span>\\\\(_{\\\\text {0.33}}\\\\)</span> were determined. The alloy was synthesized by arc melting and its physical properties were characterized by means of X-ray powder diffraction, energy dispersive X-ray spectroscopy, magnetization, electrical resistivity and specific heat measurements. Experimental data revealed that the (NbTi)<span>\\\\(_{\\\\text {0.67}}\\\\)</span>(MoHfV)<span>\\\\(_{\\\\text {0.33}}\\\\)</span> crystalizes in body-centered cubic structure and exhibits type-II superconductivity below about 5 K. In addition, electronic structure calculations were performed using the Density Functional Theory (DFT) method. Their results suggest that in case of HEAs, the influence of the local atomic configuration on their electronic structure in the energy region close to <i>E</i><span>\\\\(_{\\\\mathrm {\\\\text {F}}}\\\\)</span> is rather small or even negligible.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07488-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07488-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究人员测定了一种新型富铌钛高熵合金(NbTi)\(_{\text {0.67}}\)(MoHfV)\(_{\text {0.33}}\)的结构和超导特性。合金是通过电弧熔炼合成的,其物理性质通过 X 射线粉末衍射、能量色散 X 射线光谱、磁化、电阻率和比热测量来表征。实验数据显示,(NbTi)\(_{text {0.67}}\)(MoHfV)\(_{\text {0.33}}\)以体心立方结构结晶,并在约 5 K 以下表现出 II 型超导性。他们的研究结果表明,就 HEAs 而言,在接近 E\(_{\mathrm {text {F}}\) 的能量区域,局部原子构型对其电子结构的影响相当小,甚至可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superconductivity in a New High-Entropy Alloy (NbTi) $$_{0.67}$$ (MoHfV) $$_{0.33}$$

Superconductivity in a New High-Entropy Alloy (NbTi) $$_{0.67}$$ (MoHfV) $$_{0.33}$$

The structural and superconducting properties of a new niobium- and titanium-rich high-entropy alloy (NbTi)\(_{\text {0.67}}\)(MoHfV)\(_{\text {0.33}}\) were determined. The alloy was synthesized by arc melting and its physical properties were characterized by means of X-ray powder diffraction, energy dispersive X-ray spectroscopy, magnetization, electrical resistivity and specific heat measurements. Experimental data revealed that the (NbTi)\(_{\text {0.67}}\)(MoHfV)\(_{\text {0.33}}\) crystalizes in body-centered cubic structure and exhibits type-II superconductivity below about 5 K. In addition, electronic structure calculations were performed using the Density Functional Theory (DFT) method. Their results suggest that in case of HEAs, the influence of the local atomic configuration on their electronic structure in the energy region close to E\(_{\mathrm {\text {F}}}\) is rather small or even negligible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信