{"title":"北太平洋亚洲沿岸红鲑的遗传结构和保护:确定区域种群复合体","authors":"Anastasia M. Khrustaleva","doi":"10.1007/s10750-024-05616-0","DOIUrl":null,"url":null,"abstract":"<p>In order to describe large-scale spatial structure of sockeye salmon on the Asian part of the range, the variability of 45 SNP loci was analyzed in 22 samples from the Northwest coast of the Pacific Ocean. Three large regional population complexes were identified: Southwest Kamchatka, Kamchatka River basin, and the Northeast (comprising stocks from Koryak Highlands). Populations within the identified complexes are connected by gene migration and have a common origin, close geographic proximity, comparable climatic, landscape, and environmental conditions in the freshwater and early marine periods of sockeye salmon life. Populations confined to watersheds of the North coast of the Sea of Okhotsk (Palana and Okhota rivers), along with island populations, displayed distinctions from the isolated population complexes. It is hypothesized that the marked divergence observed in island populations is primarily caused by genetic drift occurring during long periods of isolation. The pronounced divergence of Palana River population may be the result of both genetic drift and natural selection, driven by the challenging smoltification and specific conditions of freshwater period in this watershed. At the same time in the Okhota River population, demographic factors such as genetic drift and bottlenecks played a key role.</p>","PeriodicalId":13147,"journal":{"name":"Hydrobiologia","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic structuring and conservation of sockeye salmon on the Asian coast of the North Pacific: identification of regional stock complexes\",\"authors\":\"Anastasia M. Khrustaleva\",\"doi\":\"10.1007/s10750-024-05616-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to describe large-scale spatial structure of sockeye salmon on the Asian part of the range, the variability of 45 SNP loci was analyzed in 22 samples from the Northwest coast of the Pacific Ocean. Three large regional population complexes were identified: Southwest Kamchatka, Kamchatka River basin, and the Northeast (comprising stocks from Koryak Highlands). Populations within the identified complexes are connected by gene migration and have a common origin, close geographic proximity, comparable climatic, landscape, and environmental conditions in the freshwater and early marine periods of sockeye salmon life. Populations confined to watersheds of the North coast of the Sea of Okhotsk (Palana and Okhota rivers), along with island populations, displayed distinctions from the isolated population complexes. It is hypothesized that the marked divergence observed in island populations is primarily caused by genetic drift occurring during long periods of isolation. The pronounced divergence of Palana River population may be the result of both genetic drift and natural selection, driven by the challenging smoltification and specific conditions of freshwater period in this watershed. At the same time in the Okhota River population, demographic factors such as genetic drift and bottlenecks played a key role.</p>\",\"PeriodicalId\":13147,\"journal\":{\"name\":\"Hydrobiologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrobiologia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10750-024-05616-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrobiologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10750-024-05616-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
为了描述红鲑在亚洲分布区的大尺度空间结构,对太平洋西北海岸的 22 个样本中 45 个 SNP 位点的变异性进行了分析。确定了三个大型区域种群群落:堪察加半岛西南部、堪察加半岛河流域和东北部(包括来自科里亚克高地的种群)。已确定的种群群落通过基因迁移联系在一起,具有共同的起源、相近的地理位置、相似的气候、地貌和红鲑生命淡水期和早期海洋期的环境条件。局限于鄂霍次克海北岸流域(帕拉纳河和鄂霍塔河)的种群以及岛屿种群显示出与孤立种群复合体的区别。据推测,在岛屿种群中观察到的明显分化主要是由长期隔离期间发生的基因漂移造成的。帕拉纳河种群的明显分化可能是遗传漂变和自然选择的结果,其驱动力是该流域具有挑战性的脱壳期和淡水期的特殊条件。同时,在奥霍塔河种群中,遗传漂变和瓶颈等人口因素也起到了关键作用。
Genetic structuring and conservation of sockeye salmon on the Asian coast of the North Pacific: identification of regional stock complexes
In order to describe large-scale spatial structure of sockeye salmon on the Asian part of the range, the variability of 45 SNP loci was analyzed in 22 samples from the Northwest coast of the Pacific Ocean. Three large regional population complexes were identified: Southwest Kamchatka, Kamchatka River basin, and the Northeast (comprising stocks from Koryak Highlands). Populations within the identified complexes are connected by gene migration and have a common origin, close geographic proximity, comparable climatic, landscape, and environmental conditions in the freshwater and early marine periods of sockeye salmon life. Populations confined to watersheds of the North coast of the Sea of Okhotsk (Palana and Okhota rivers), along with island populations, displayed distinctions from the isolated population complexes. It is hypothesized that the marked divergence observed in island populations is primarily caused by genetic drift occurring during long periods of isolation. The pronounced divergence of Palana River population may be the result of both genetic drift and natural selection, driven by the challenging smoltification and specific conditions of freshwater period in this watershed. At the same time in the Okhota River population, demographic factors such as genetic drift and bottlenecks played a key role.
期刊介绍:
Hydrobiologia publishes original research, reviews and opinions regarding the biology of all aquatic environments, including the impact of human activities. We welcome molecular-, organism-, community- and ecosystem-level studies in contributions dealing with limnology and oceanography, including systematics and aquatic ecology. Hypothesis-driven experimental research is preferred, but also theoretical papers or articles with large descriptive content will be considered, provided they are made relevant to a broad hydrobiological audience. Applied aspects will be considered if firmly embedded in an ecological context.