使用支持向量机对路面状况进行分类,促进安全驾驶

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-07-02 DOI:10.3390/s24134307
Jaepil Moon, Wonil Park
{"title":"使用支持向量机对路面状况进行分类,促进安全驾驶","authors":"Jaepil Moon, Wonil Park","doi":"10.3390/s24134307","DOIUrl":null,"url":null,"abstract":"Accurate detection of road surface conditions in adverse winter weather is essential for traffic safety. To promote safe driving and efficient road management, this study presents an accurate and generalizable data-driven learning model for the estimation of road surface conditions. The machine model was a support vector machine (SVM), which has been successfully applied in diverse fields, and kernel functions (linear, Gaussian, second-order polynomial) with a soft margin classification technique were also adopted. Two learner designs (one-vs-one, one-vs-all) extended their application to multi-class classification. In addition to this non-probabilistic classifier, this study calculated the posterior probability of belonging to each group by applying the sigmoid function to the classification scores obtained by the trained SVM. The results indicate that the classification errors of all the classifiers, excluding the one-vs-all linear learners, were below 3%, thereby accurately classifying road surface conditions, and that the generalization performance of all the one-vs-one learners was within an error rate of 4%. The results also showed that the posterior probabilities can analyze certain atmospheric and road surface conditions that correspond to a high probability of hazardous road surface conditions. Therefore, this study demonstrates the potential of data-driven learning models in classifying road surface conditions accurately.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Support Vector Machines to Classify Road Surface Conditions to Promote Safe Driving\",\"authors\":\"Jaepil Moon, Wonil Park\",\"doi\":\"10.3390/s24134307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate detection of road surface conditions in adverse winter weather is essential for traffic safety. To promote safe driving and efficient road management, this study presents an accurate and generalizable data-driven learning model for the estimation of road surface conditions. The machine model was a support vector machine (SVM), which has been successfully applied in diverse fields, and kernel functions (linear, Gaussian, second-order polynomial) with a soft margin classification technique were also adopted. Two learner designs (one-vs-one, one-vs-all) extended their application to multi-class classification. In addition to this non-probabilistic classifier, this study calculated the posterior probability of belonging to each group by applying the sigmoid function to the classification scores obtained by the trained SVM. The results indicate that the classification errors of all the classifiers, excluding the one-vs-all linear learners, were below 3%, thereby accurately classifying road surface conditions, and that the generalization performance of all the one-vs-one learners was within an error rate of 4%. The results also showed that the posterior probabilities can analyze certain atmospheric and road surface conditions that correspond to a high probability of hazardous road surface conditions. Therefore, this study demonstrates the potential of data-driven learning models in classifying road surface conditions accurately.\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24134307\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134307","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确检测冬季恶劣天气下的路面状况对交通安全至关重要。为了促进安全驾驶和高效的道路管理,本研究提出了一种准确且可推广的数据驱动学习模型,用于估计路面状况。该模型采用了已成功应用于多个领域的支持向量机(SVM),并采用了核函数(线性、高斯、二阶多项式)和软边际分类技术。两种学习器设计(one-vs-one、one-vs-all)将其应用扩展到了多类分类。除了这种非概率分类器之外,本研究还通过对训练好的 SVM 得到的分类分数应用 sigmoid 函数来计算属于每个组的后验概率。结果表明,除 "一对一 "线性学习器外,所有分类器的分类误差都低于 3%,从而准确地对路面状况进行了分类,所有 "一对一 "学习器的泛化性能误差率都在 4% 以内。研究结果还表明,后验概率可以分析出某些大气和路面状况,而这些状况与危险路面状况的高概率相对应。因此,本研究证明了数据驱动学习模型在准确分类路面状况方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Support Vector Machines to Classify Road Surface Conditions to Promote Safe Driving
Accurate detection of road surface conditions in adverse winter weather is essential for traffic safety. To promote safe driving and efficient road management, this study presents an accurate and generalizable data-driven learning model for the estimation of road surface conditions. The machine model was a support vector machine (SVM), which has been successfully applied in diverse fields, and kernel functions (linear, Gaussian, second-order polynomial) with a soft margin classification technique were also adopted. Two learner designs (one-vs-one, one-vs-all) extended their application to multi-class classification. In addition to this non-probabilistic classifier, this study calculated the posterior probability of belonging to each group by applying the sigmoid function to the classification scores obtained by the trained SVM. The results indicate that the classification errors of all the classifiers, excluding the one-vs-all linear learners, were below 3%, thereby accurately classifying road surface conditions, and that the generalization performance of all the one-vs-one learners was within an error rate of 4%. The results also showed that the posterior probabilities can analyze certain atmospheric and road surface conditions that correspond to a high probability of hazardous road surface conditions. Therefore, this study demonstrates the potential of data-driven learning models in classifying road surface conditions accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信