三电纳米发电机:技术现状

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-07-02 DOI:10.3390/s24134298
Zhan Shi, Yanhu Zhang, Jiawei Gu, Bao Liu, Hao Fu, Hongyu Liang, Jinghu Ji
{"title":"三电纳米发电机:技术现状","authors":"Zhan Shi, Yanhu Zhang, Jiawei Gu, Bao Liu, Hao Fu, Hongyu Liang, Jinghu Ji","doi":"10.3390/s24134298","DOIUrl":null,"url":null,"abstract":"The triboelectric nanogenerator (TENG), as a novel energy harvesting technology, has garnered widespread attention. As a relatively young field in nanogenerator research, investigations into various aspects of the TENG are still ongoing. This review summarizes the development and dissemination of the fundamental principles of triboelectricity generation. It outlines the evolution of triboelectricity principles, ranging from the fabrication of the first TENG to the selection of triboelectric materials and the confirmation of the electron cloud overlapping model. Furthermore, recent advancements in TENG application scenarios are discussed from four perspectives, along with the research progress in performance optimization through three primary approaches, highlighting their respective strengths and limitations. Finally, the paper addresses the major challenges hindering the practical application and widespread adoption of TENGs, while also providing insights into future developments. With continued research on the TENG, it is expected that these challenges can be overcome, paving the way for its extensive utilization in various real-world scenarios.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triboelectric Nanogenerators: State of the Art\",\"authors\":\"Zhan Shi, Yanhu Zhang, Jiawei Gu, Bao Liu, Hao Fu, Hongyu Liang, Jinghu Ji\",\"doi\":\"10.3390/s24134298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The triboelectric nanogenerator (TENG), as a novel energy harvesting technology, has garnered widespread attention. As a relatively young field in nanogenerator research, investigations into various aspects of the TENG are still ongoing. This review summarizes the development and dissemination of the fundamental principles of triboelectricity generation. It outlines the evolution of triboelectricity principles, ranging from the fabrication of the first TENG to the selection of triboelectric materials and the confirmation of the electron cloud overlapping model. Furthermore, recent advancements in TENG application scenarios are discussed from four perspectives, along with the research progress in performance optimization through three primary approaches, highlighting their respective strengths and limitations. Finally, the paper addresses the major challenges hindering the practical application and widespread adoption of TENGs, while also providing insights into future developments. With continued research on the TENG, it is expected that these challenges can be overcome, paving the way for its extensive utilization in various real-world scenarios.\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24134298\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134298","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

三电纳米发电机(TENG)作为一种新型能量收集技术,已引起广泛关注。作为纳米发电机研究中一个相对年轻的领域,对 TENG 各方面的研究仍在进行中。本综述总结了三光电发电基本原理的发展和传播。它概述了三电原理的演变过程,从第一台 TENG 的制造到三电材料的选择以及电子云重叠模型的确认。此外,论文还从四个方面讨论了 TENG 应用场景的最新进展,以及通过三种主要方法进行性能优化的研究进展,强调了它们各自的优势和局限性。最后,本文探讨了阻碍 TENG 实际应用和广泛采用的主要挑战,同时也对未来的发展提出了见解。随着对 TENG 研究的不断深入,这些挑战有望被克服,为其在各种实际应用场景中的广泛应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triboelectric Nanogenerators: State of the Art
The triboelectric nanogenerator (TENG), as a novel energy harvesting technology, has garnered widespread attention. As a relatively young field in nanogenerator research, investigations into various aspects of the TENG are still ongoing. This review summarizes the development and dissemination of the fundamental principles of triboelectricity generation. It outlines the evolution of triboelectricity principles, ranging from the fabrication of the first TENG to the selection of triboelectric materials and the confirmation of the electron cloud overlapping model. Furthermore, recent advancements in TENG application scenarios are discussed from four perspectives, along with the research progress in performance optimization through three primary approaches, highlighting their respective strengths and limitations. Finally, the paper addresses the major challenges hindering the practical application and widespread adoption of TENGs, while also providing insights into future developments. With continued research on the TENG, it is expected that these challenges can be overcome, paving the way for its extensive utilization in various real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信