混合体积和布拉什克-勒贝格定理

IF 0.6 3区 数学 Q3 MATHEMATICS
B. Bogosel
{"title":"混合体积和布拉什克-勒贝格定理","authors":"B. Bogosel","doi":"10.1007/s10474-024-01435-w","DOIUrl":null,"url":null,"abstract":"<div><p>The mixed area of a Reuleaux polygon and its symmetric with respect to the origin is expressed in terms of the mixed area of two explicit polygons. This gives a geometric explanation of a classical proof due to Chakerian. Mixed areas and volumes are also used to reformulate the minimization of the volume under constant width constraint as isoperimetric problems. In the two dimensional case, the equivalent formulation is solved, providing another proof of the Blaschke–Lebesgue theorem. In the three dimensional case the proposed relaxed formulation involves the mean width, the area and inclusion constraints.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"122 - 138"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed volumes and the Blaschke–Lebesgue theorem\",\"authors\":\"B. Bogosel\",\"doi\":\"10.1007/s10474-024-01435-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mixed area of a Reuleaux polygon and its symmetric with respect to the origin is expressed in terms of the mixed area of two explicit polygons. This gives a geometric explanation of a classical proof due to Chakerian. Mixed areas and volumes are also used to reformulate the minimization of the volume under constant width constraint as isoperimetric problems. In the two dimensional case, the equivalent formulation is solved, providing another proof of the Blaschke–Lebesgue theorem. In the three dimensional case the proposed relaxed formulation involves the mean width, the area and inclusion constraints.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"122 - 138\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01435-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01435-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用两个显式多边形的混合面积来表示 Reuleaux 多边形的混合面积及其关于原点的对称面积。这为查克里安的经典证明提供了几何解释。混合面积和体积还被用来将恒定宽度约束下的体积最小化重新表述为等周问题。在二维情况下,求解了等价公式,为布拉什克-勒贝格定理提供了另一个证明。在三维情况下,提出的放宽公式涉及平均宽度、面积和包容约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed volumes and the Blaschke–Lebesgue theorem

The mixed area of a Reuleaux polygon and its symmetric with respect to the origin is expressed in terms of the mixed area of two explicit polygons. This gives a geometric explanation of a classical proof due to Chakerian. Mixed areas and volumes are also used to reformulate the minimization of the volume under constant width constraint as isoperimetric problems. In the two dimensional case, the equivalent formulation is solved, providing another proof of the Blaschke–Lebesgue theorem. In the three dimensional case the proposed relaxed formulation involves the mean width, the area and inclusion constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信