{"title":"用于驾驶员面部瞌睡检测的轻量级 YOLOv8 网络","authors":"Meng Zhang, Fumin Zhang","doi":"10.1007/s12239-024-00103-w","DOIUrl":null,"url":null,"abstract":"<p>Vision-based driver monitoring, a non-invasive method designed to identify potentially dangerous operations, has attracted increasing attention in recent years. In this study, a head pitch angle detection method was established to evaluate the driver’s drowsiness. Rather than employing the front facial landmarks to estimate head pitch angle, the proposed method measure this angel directly from driver’s profile face. To meet the requirement of real-time detection, the method applies the YOLOv8 network of single-stage detection and utilizes MobileNetV3 and FasterNet for lightweight improvement. The detector is trained with re-labeled CFP datasets, and real-time speed tests have been performed. Results demonstrate that the non-improved detector can achieve an mAP50 of 97.3% of the keypoints in a single frame, meanwhile realizing the frame rate of 30.41 FPS. After improvement, parameters of the model have been reduced by 21.3% and 40.9% respectively, while the frame rate can be increased to 37.13 FPS and 52.70 FPS, and the mAP50 of keypoints is increased by 0.41% and 0.51%. The results during the in-car experiment have proved that the developed detection method can effectively evaluate the head pitch angle, thus detect the driver’s drowsiness. We provide open-access to the annotated data and pre-trained models in this study.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight YOLOv8 Networks for Driver Profile Face Drowsiness Detection\",\"authors\":\"Meng Zhang, Fumin Zhang\",\"doi\":\"10.1007/s12239-024-00103-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vision-based driver monitoring, a non-invasive method designed to identify potentially dangerous operations, has attracted increasing attention in recent years. In this study, a head pitch angle detection method was established to evaluate the driver’s drowsiness. Rather than employing the front facial landmarks to estimate head pitch angle, the proposed method measure this angel directly from driver’s profile face. To meet the requirement of real-time detection, the method applies the YOLOv8 network of single-stage detection and utilizes MobileNetV3 and FasterNet for lightweight improvement. The detector is trained with re-labeled CFP datasets, and real-time speed tests have been performed. Results demonstrate that the non-improved detector can achieve an mAP50 of 97.3% of the keypoints in a single frame, meanwhile realizing the frame rate of 30.41 FPS. After improvement, parameters of the model have been reduced by 21.3% and 40.9% respectively, while the frame rate can be increased to 37.13 FPS and 52.70 FPS, and the mAP50 of keypoints is increased by 0.41% and 0.51%. The results during the in-car experiment have proved that the developed detection method can effectively evaluate the head pitch angle, thus detect the driver’s drowsiness. We provide open-access to the annotated data and pre-trained models in this study.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00103-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00103-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Lightweight YOLOv8 Networks for Driver Profile Face Drowsiness Detection
Vision-based driver monitoring, a non-invasive method designed to identify potentially dangerous operations, has attracted increasing attention in recent years. In this study, a head pitch angle detection method was established to evaluate the driver’s drowsiness. Rather than employing the front facial landmarks to estimate head pitch angle, the proposed method measure this angel directly from driver’s profile face. To meet the requirement of real-time detection, the method applies the YOLOv8 network of single-stage detection and utilizes MobileNetV3 and FasterNet for lightweight improvement. The detector is trained with re-labeled CFP datasets, and real-time speed tests have been performed. Results demonstrate that the non-improved detector can achieve an mAP50 of 97.3% of the keypoints in a single frame, meanwhile realizing the frame rate of 30.41 FPS. After improvement, parameters of the model have been reduced by 21.3% and 40.9% respectively, while the frame rate can be increased to 37.13 FPS and 52.70 FPS, and the mAP50 of keypoints is increased by 0.41% and 0.51%. The results during the in-car experiment have proved that the developed detection method can effectively evaluate the head pitch angle, thus detect the driver’s drowsiness. We provide open-access to the annotated data and pre-trained models in this study.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.