用于驾驶员面部瞌睡检测的轻量级 YOLOv8 网络

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meng Zhang, Fumin Zhang
{"title":"用于驾驶员面部瞌睡检测的轻量级 YOLOv8 网络","authors":"Meng Zhang, Fumin Zhang","doi":"10.1007/s12239-024-00103-w","DOIUrl":null,"url":null,"abstract":"<p>Vision-based driver monitoring, a non-invasive method designed to identify potentially dangerous operations, has attracted increasing attention in recent years. In this study, a head pitch angle detection method was established to evaluate the driver’s drowsiness. Rather than employing the front facial landmarks to estimate head pitch angle, the proposed method measure this angel directly from driver’s profile face. To meet the requirement of real-time detection, the method applies the YOLOv8 network of single-stage detection and utilizes MobileNetV3 and FasterNet for lightweight improvement. The detector is trained with re-labeled CFP datasets, and real-time speed tests have been performed. Results demonstrate that the non-improved detector can achieve an mAP50 of 97.3% of the keypoints in a single frame, meanwhile realizing the frame rate of 30.41 FPS. After improvement, parameters of the model have been reduced by 21.3% and 40.9% respectively, while the frame rate can be increased to 37.13 FPS and 52.70 FPS, and the mAP50 of keypoints is increased by 0.41% and 0.51%. The results during the in-car experiment have proved that the developed detection method can effectively evaluate the head pitch angle, thus detect the driver’s drowsiness. We provide open-access to the annotated data and pre-trained models in this study.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight YOLOv8 Networks for Driver Profile Face Drowsiness Detection\",\"authors\":\"Meng Zhang, Fumin Zhang\",\"doi\":\"10.1007/s12239-024-00103-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vision-based driver monitoring, a non-invasive method designed to identify potentially dangerous operations, has attracted increasing attention in recent years. In this study, a head pitch angle detection method was established to evaluate the driver’s drowsiness. Rather than employing the front facial landmarks to estimate head pitch angle, the proposed method measure this angel directly from driver’s profile face. To meet the requirement of real-time detection, the method applies the YOLOv8 network of single-stage detection and utilizes MobileNetV3 and FasterNet for lightweight improvement. The detector is trained with re-labeled CFP datasets, and real-time speed tests have been performed. Results demonstrate that the non-improved detector can achieve an mAP50 of 97.3% of the keypoints in a single frame, meanwhile realizing the frame rate of 30.41 FPS. After improvement, parameters of the model have been reduced by 21.3% and 40.9% respectively, while the frame rate can be increased to 37.13 FPS and 52.70 FPS, and the mAP50 of keypoints is increased by 0.41% and 0.51%. The results during the in-car experiment have proved that the developed detection method can effectively evaluate the head pitch angle, thus detect the driver’s drowsiness. We provide open-access to the annotated data and pre-trained models in this study.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00103-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00103-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的驾驶员监测是一种旨在识别潜在危险操作的非侵入式方法,近年来已引起越来越多的关注。在这项研究中,建立了一种头部俯仰角检测方法来评估驾驶员的瞌睡程度。该方法不使用前面部地标来估计头部俯仰角,而是直接从驾驶员的面部轮廓来测量头部俯仰角。为了满足实时检测的要求,该方法采用了单级检测的 YOLOv8 网络,并利用 MobileNetV3 和 FasterNet 进行了轻量级改进。使用重新标记的 CFP 数据集对检测器进行了训练,并进行了实时速度测试。结果表明,未经改进的检测器可以在单帧中实现 97.3% 的关键点 mAP50,同时实现 30.41 FPS 的帧速率。改进后,模型参数分别降低了 21.3% 和 40.9%,帧速率分别提高到 37.13 FPS 和 52.70 FPS,关键点的 mAP50 分别提高了 0.41% 和 0.51%。车载实验结果证明,所开发的检测方法能有效评估头部俯仰角,从而检测出驾驶员的瞌睡情况。我们开放了本研究中的注释数据和预训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lightweight YOLOv8 Networks for Driver Profile Face Drowsiness Detection

Lightweight YOLOv8 Networks for Driver Profile Face Drowsiness Detection

Vision-based driver monitoring, a non-invasive method designed to identify potentially dangerous operations, has attracted increasing attention in recent years. In this study, a head pitch angle detection method was established to evaluate the driver’s drowsiness. Rather than employing the front facial landmarks to estimate head pitch angle, the proposed method measure this angel directly from driver’s profile face. To meet the requirement of real-time detection, the method applies the YOLOv8 network of single-stage detection and utilizes MobileNetV3 and FasterNet for lightweight improvement. The detector is trained with re-labeled CFP datasets, and real-time speed tests have been performed. Results demonstrate that the non-improved detector can achieve an mAP50 of 97.3% of the keypoints in a single frame, meanwhile realizing the frame rate of 30.41 FPS. After improvement, parameters of the model have been reduced by 21.3% and 40.9% respectively, while the frame rate can be increased to 37.13 FPS and 52.70 FPS, and the mAP50 of keypoints is increased by 0.41% and 0.51%. The results during the in-car experiment have proved that the developed detection method can effectively evaluate the head pitch angle, thus detect the driver’s drowsiness. We provide open-access to the annotated data and pre-trained models in this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信