{"title":"基于局部空调系统的商用车内人体热舒适度调节的非等温喷射送风方法研究","authors":"Qiushi Wan, Youwei Zhang, Sheng Wu","doi":"10.1007/s12239-024-00111-w","DOIUrl":null,"url":null,"abstract":"<p>Uneven heating of the human body in the cabin is one of the main reasons for poor thermal comfort. In this study, five small thermoelectric cooling devices were used to build the automobile localized air conditioning system to improve body temperature uniformity by the method of multi-point air supply. The cooling capacity of each thermoelectric cooling device can be changed independently so the localized air conditioning could work with a non-isothermal jet air supply method to optimize each thermoelectric cooling device outlet temperature based on thermal simulation analysis results aimed at better body heat flux balance and lower power consumption. The air temperature and skin temperature test were done to verify the simulation as well. The maximum deviation of the predicted stable air temperature was 0.82 ℃. The maximum deviation of the predicted skin temperature was 1.83 ℃. The subjective evaluation experiment of human thermal comfort was carried out, and the average overall thermal comfort vote of the volunteers was changed from 1.02 to − 0.44 after the localized air condition turning on, which showed that the temperature adjustment had a good effect on improving the heat balance and the thermal comfort of the human body.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Non-isothermal Jet Air Supply Method for Human Thermal Comfort Regulation in Commercial Vehicle Based on Localized Air Conditioning System\",\"authors\":\"Qiushi Wan, Youwei Zhang, Sheng Wu\",\"doi\":\"10.1007/s12239-024-00111-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Uneven heating of the human body in the cabin is one of the main reasons for poor thermal comfort. In this study, five small thermoelectric cooling devices were used to build the automobile localized air conditioning system to improve body temperature uniformity by the method of multi-point air supply. The cooling capacity of each thermoelectric cooling device can be changed independently so the localized air conditioning could work with a non-isothermal jet air supply method to optimize each thermoelectric cooling device outlet temperature based on thermal simulation analysis results aimed at better body heat flux balance and lower power consumption. The air temperature and skin temperature test were done to verify the simulation as well. The maximum deviation of the predicted stable air temperature was 0.82 ℃. The maximum deviation of the predicted skin temperature was 1.83 ℃. The subjective evaluation experiment of human thermal comfort was carried out, and the average overall thermal comfort vote of the volunteers was changed from 1.02 to − 0.44 after the localized air condition turning on, which showed that the temperature adjustment had a good effect on improving the heat balance and the thermal comfort of the human body.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00111-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00111-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on Non-isothermal Jet Air Supply Method for Human Thermal Comfort Regulation in Commercial Vehicle Based on Localized Air Conditioning System
Uneven heating of the human body in the cabin is one of the main reasons for poor thermal comfort. In this study, five small thermoelectric cooling devices were used to build the automobile localized air conditioning system to improve body temperature uniformity by the method of multi-point air supply. The cooling capacity of each thermoelectric cooling device can be changed independently so the localized air conditioning could work with a non-isothermal jet air supply method to optimize each thermoelectric cooling device outlet temperature based on thermal simulation analysis results aimed at better body heat flux balance and lower power consumption. The air temperature and skin temperature test were done to verify the simulation as well. The maximum deviation of the predicted stable air temperature was 0.82 ℃. The maximum deviation of the predicted skin temperature was 1.83 ℃. The subjective evaluation experiment of human thermal comfort was carried out, and the average overall thermal comfort vote of the volunteers was changed from 1.02 to − 0.44 after the localized air condition turning on, which showed that the temperature adjustment had a good effect on improving the heat balance and the thermal comfort of the human body.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.