Dohyun Park, Woong Lee, Jongryeol Jeong, Dominik Karbowski, Namwook Kim
{"title":"通过动态编程优化电池电动汽车的生态驾驶模式","authors":"Dohyun Park, Woong Lee, Jongryeol Jeong, Dominik Karbowski, Namwook Kim","doi":"10.1007/s12239-024-00105-8","DOIUrl":null,"url":null,"abstract":"<p>Although full automation has not yet been achieved, automated vehicles are a valid research area. Not only would automated vehicles provide ultimate driver convenience, but they would maximize energy efficiency by eliminating undesired human driving behaviors and optimally controlling the powertrain. From the perspective of control related to energy saving, speed profile optimization is important for improving system efficiency and satisfying passenger demands. This study employs Dynamic Programming (DP) to solve the constrained optimal problem for travel time, distance, and speed limit by exploring all possible control options. The solutions obtained by DP demonstrate consistent control patterns combining four control modes—acceleration, cruising, coasting, and braking, with cruising or coasting being selective depending on the boundary conditions. This study introduces DP-based simulation results and attempts to provide comprehensive interpretations of the optimal policy by analyzing the essential factors that affect the control problem, including boundary conditions, road load, and powertrain characteristics. Based on these interpretations, the control concepts can be explained as the optimal policy selecting the best control option based on system efficiency and boundary conditions. The results of DP are compared with a human-like driver model to show that the optimal speed profiles can effectively reduce energy consumption.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"22 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-driving Profile Optimization by Dynamic Programming for Battery Electric Vehicles\",\"authors\":\"Dohyun Park, Woong Lee, Jongryeol Jeong, Dominik Karbowski, Namwook Kim\",\"doi\":\"10.1007/s12239-024-00105-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although full automation has not yet been achieved, automated vehicles are a valid research area. Not only would automated vehicles provide ultimate driver convenience, but they would maximize energy efficiency by eliminating undesired human driving behaviors and optimally controlling the powertrain. From the perspective of control related to energy saving, speed profile optimization is important for improving system efficiency and satisfying passenger demands. This study employs Dynamic Programming (DP) to solve the constrained optimal problem for travel time, distance, and speed limit by exploring all possible control options. The solutions obtained by DP demonstrate consistent control patterns combining four control modes—acceleration, cruising, coasting, and braking, with cruising or coasting being selective depending on the boundary conditions. This study introduces DP-based simulation results and attempts to provide comprehensive interpretations of the optimal policy by analyzing the essential factors that affect the control problem, including boundary conditions, road load, and powertrain characteristics. Based on these interpretations, the control concepts can be explained as the optimal policy selecting the best control option based on system efficiency and boundary conditions. The results of DP are compared with a human-like driver model to show that the optimal speed profiles can effectively reduce energy consumption.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00105-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00105-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Eco-driving Profile Optimization by Dynamic Programming for Battery Electric Vehicles
Although full automation has not yet been achieved, automated vehicles are a valid research area. Not only would automated vehicles provide ultimate driver convenience, but they would maximize energy efficiency by eliminating undesired human driving behaviors and optimally controlling the powertrain. From the perspective of control related to energy saving, speed profile optimization is important for improving system efficiency and satisfying passenger demands. This study employs Dynamic Programming (DP) to solve the constrained optimal problem for travel time, distance, and speed limit by exploring all possible control options. The solutions obtained by DP demonstrate consistent control patterns combining four control modes—acceleration, cruising, coasting, and braking, with cruising or coasting being selective depending on the boundary conditions. This study introduces DP-based simulation results and attempts to provide comprehensive interpretations of the optimal policy by analyzing the essential factors that affect the control problem, including boundary conditions, road load, and powertrain characteristics. Based on these interpretations, the control concepts can be explained as the optimal policy selecting the best control option based on system efficiency and boundary conditions. The results of DP are compared with a human-like driver model to show that the optimal speed profiles can effectively reduce energy consumption.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.