{"title":"单位盘上的有界微分和相关几何","authors":"Song Dai, Qiongling Li","doi":"10.1090/tran/9154","DOIUrl":null,"url":null,"abstract":"<p>For a harmonic diffeomorphism between the Poincaré disks, Wan [J. Differential Geom. 35 (1992), pp. 643–657] showed the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this paper, we will generalize this result from quadratic differentials to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials. We study the relationship between bounded holomorphic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials/<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis r minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(r-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differential and the induced curvature of the associated harmonic maps from the unit disk to the symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L left-parenthesis r comma double-struck upper R right-parenthesis slash upper S upper O left-parenthesis r right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>S</mml:mi> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SL(r,\\mathbb R)/SO(r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic affine spheres in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R cubed\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, maximal surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript 2 comma n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^{2,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J\"> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding=\"application/x-tex\">J</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-holomorphic curves in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript 4 comma 2\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^{4,2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Benoist-Hulin and Labourie-Toulisse have previously obtained some of these equivalences using different methods.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded differentials on the unit disk and the associated geometry\",\"authors\":\"Song Dai, Qiongling Li\",\"doi\":\"10.1090/tran/9154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a harmonic diffeomorphism between the Poincaré disks, Wan [J. Differential Geom. 35 (1992), pp. 643–657] showed the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this paper, we will generalize this result from quadratic differentials to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials. We study the relationship between bounded holomorphic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials/<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis r minus 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(r-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differential and the induced curvature of the associated harmonic maps from the unit disk to the symmetric space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S upper L left-parenthesis r comma double-struck upper R right-parenthesis slash upper S upper O left-parenthesis r right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>S</mml:mi> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">SL(r,\\\\mathbb R)/SO(r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic affine spheres in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R cubed\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, maximal surfaces in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript 2 comma n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^{2,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper J\\\"> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">J</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-holomorphic curves in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript 4 comma 2\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^{4,2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Benoist-Hulin and Labourie-Toulisse have previously obtained some of these equivalences using different methods.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9154\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9154","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于 Poincaré 碟之间的谐波衍射,Wan [J. Differential Geom.本文将把这一结果从二次微分推广到 r r 微分。我们研究了有界全形 r r -差分/ ( r - 1 ) (r-1) -差分与单位盘到对称空间 S L ( r , R ) / S O ( r ) SL(r,\mathbb R)/SO(r) 的相关谐波映射的诱导曲率之间的关系,这些谐波映射产生于循环/次循环希格斯束。此外,我们还证明了全形微分的有界性与在 R 3 \mathbb {R}^3 中的双曲仿射球、H 2 , n \mathbb {H}^{2,n} 中的最大曲面和 H 4 , 2 \mathbb {H}^{4,2} 中的 J J -全形曲线上的诱导曲率的负上界之间的等价性。Benoist-Hulin 和 Labourie-Toulisse 以前用不同的方法得到了其中的一些等价性。
Bounded differentials on the unit disk and the associated geometry
For a harmonic diffeomorphism between the Poincaré disks, Wan [J. Differential Geom. 35 (1992), pp. 643–657] showed the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this paper, we will generalize this result from quadratic differentials to rr-differentials. We study the relationship between bounded holomorphic rr-differentials/(r−1)(r-1)-differential and the induced curvature of the associated harmonic maps from the unit disk to the symmetric space SL(r,R)/SO(r)SL(r,\mathbb R)/SO(r) arising from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic affine spheres in R3\mathbb {R}^3, maximal surfaces in H2,n\mathbb {H}^{2,n} and JJ-holomorphic curves in H4,2\mathbb {H}^{4,2}. Benoist-Hulin and Labourie-Toulisse have previously obtained some of these equivalences using different methods.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.