单位盘上的有界微分和相关几何

IF 1.2 2区 数学 Q1 MATHEMATICS
Song Dai, Qiongling Li
{"title":"单位盘上的有界微分和相关几何","authors":"Song Dai, Qiongling Li","doi":"10.1090/tran/9154","DOIUrl":null,"url":null,"abstract":"<p>For a harmonic diffeomorphism between the Poincaré disks, Wan [J. Differential Geom. 35 (1992), pp. 643–657] showed the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this paper, we will generalize this result from quadratic differentials to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials. We study the relationship between bounded holomorphic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\"application/x-tex\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials/<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis r minus 1 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(r-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differential and the induced curvature of the associated harmonic maps from the unit disk to the symmetric space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L left-parenthesis r comma double-struck upper R right-parenthesis slash upper S upper O left-parenthesis r right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>S</mml:mi> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SL(r,\\mathbb R)/SO(r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic affine spheres in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R cubed\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, maximal surfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript 2 comma n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^{2,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper J\"> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding=\"application/x-tex\">J</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-holomorphic curves in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper H Superscript 4 comma 2\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {H}^{4,2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Benoist-Hulin and Labourie-Toulisse have previously obtained some of these equivalences using different methods.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded differentials on the unit disk and the associated geometry\",\"authors\":\"Song Dai, Qiongling Li\",\"doi\":\"10.1090/tran/9154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a harmonic diffeomorphism between the Poincaré disks, Wan [J. Differential Geom. 35 (1992), pp. 643–657] showed the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this paper, we will generalize this result from quadratic differentials to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials. We study the relationship between bounded holomorphic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"r\\\"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differentials/<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis r minus 1 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(r-1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-differential and the induced curvature of the associated harmonic maps from the unit disk to the symmetric space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S upper L left-parenthesis r comma double-struck upper R right-parenthesis slash upper S upper O left-parenthesis r right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>S</mml:mi> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">SL(r,\\\\mathbb R)/SO(r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic affine spheres in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R cubed\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, maximal surfaces in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript 2 comma n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^{2,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper J\\\"> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">J</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-holomorphic curves in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper H Superscript 4 comma 2\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {H}^{4,2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Benoist-Hulin and Labourie-Toulisse have previously obtained some of these equivalences using different methods.</p>\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9154\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9154","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 Poincaré 碟之间的谐波衍射,Wan [J. Differential Geom.本文将把这一结果从二次微分推广到 r r 微分。我们研究了有界全形 r r -差分/ ( r - 1 ) (r-1) -差分与单位盘到对称空间 S L ( r , R ) / S O ( r ) SL(r,\mathbb R)/SO(r) 的相关谐波映射的诱导曲率之间的关系,这些谐波映射产生于循环/次循环希格斯束。此外,我们还证明了全形微分的有界性与在 R 3 \mathbb {R}^3 中的双曲仿射球、H 2 , n \mathbb {H}^{2,n} 中的最大曲面和 H 4 , 2 \mathbb {H}^{4,2} 中的 J J -全形曲线上的诱导曲率的负上界之间的等价性。Benoist-Hulin 和 Labourie-Toulisse 以前用不同的方法得到了其中的一些等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded differentials on the unit disk and the associated geometry

For a harmonic diffeomorphism between the Poincaré disks, Wan [J. Differential Geom. 35 (1992), pp. 643–657] showed the equivalence between the boundedness of the Hopf differential and the quasi-conformality. In this paper, we will generalize this result from quadratic differentials to r r -differentials. We study the relationship between bounded holomorphic r r -differentials/ ( r 1 ) (r-1) -differential and the induced curvature of the associated harmonic maps from the unit disk to the symmetric space S L ( r , R ) / S O ( r ) SL(r,\mathbb R)/SO(r) arising from cyclic/subcyclic Higgs bundles. Also, we show the equivalence between the boundedness of holomorphic differentials and having a negative upper bound of the induced curvature on hyperbolic affine spheres in R 3 \mathbb {R}^3 , maximal surfaces in H 2 , n \mathbb {H}^{2,n} and J J -holomorphic curves in H 4 , 2 \mathbb {H}^{4,2} . Benoist-Hulin and Labourie-Toulisse have previously obtained some of these equivalences using different methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信