Anna S. Kashnik, Anastasiya N. Atnyukova, Denis S. Baranov, Sergei A. Dzuba
{"title":"自旋标记双氯芬酸在不同成分脂质双分子层中的空间排列 DEER 研究","authors":"Anna S. Kashnik, Anastasiya N. Atnyukova, Denis S. Baranov, Sergei A. Dzuba","doi":"10.1007/s00723-024-01674-8","DOIUrl":null,"url":null,"abstract":"<div><p>Diclofenac is a non-steroidal anti-inflammatory drug (NSAID). Here, we use double electron–electron resonance (DEER, also known as PELDOR) to study the interaction of spin-labeled diclofenac (diclofenac-SL) with three types of model membranes consisting of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and this mixture with the addition of 20 mol% cholesterol. The results suggest that lipid-mediated lateral clustering of diclofenac-SL molecules occurs in all cases. For the POPC bilayer, alternative clustering takes place in two opposite leaflets, with random distribution of the molecules within the clusters. For DOPC/DPPC and DOPC/DPPC/cholesterol bilayers, diclofenac-SL molecules are separated by a distance of at least 1.4 nm. DOPC/DPPC/cholesterol bilayers are known to form nanoscale liquid disordered and liquid ordered lateral structures, the latter called lipid rafts. For this case, diclofenac-SL molecules were found to be captured by lipid rafts, forming a quasi-regular two-dimensional substructure in them with a “superlattice” parameter of ~ 3.0 nm.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1145 - 1157"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEER Study of Spatial Arrangement of Spin-Labeled Diclofenac in Lipid Bilayers of Different Composition\",\"authors\":\"Anna S. Kashnik, Anastasiya N. Atnyukova, Denis S. Baranov, Sergei A. Dzuba\",\"doi\":\"10.1007/s00723-024-01674-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diclofenac is a non-steroidal anti-inflammatory drug (NSAID). Here, we use double electron–electron resonance (DEER, also known as PELDOR) to study the interaction of spin-labeled diclofenac (diclofenac-SL) with three types of model membranes consisting of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and this mixture with the addition of 20 mol% cholesterol. The results suggest that lipid-mediated lateral clustering of diclofenac-SL molecules occurs in all cases. For the POPC bilayer, alternative clustering takes place in two opposite leaflets, with random distribution of the molecules within the clusters. For DOPC/DPPC and DOPC/DPPC/cholesterol bilayers, diclofenac-SL molecules are separated by a distance of at least 1.4 nm. DOPC/DPPC/cholesterol bilayers are known to form nanoscale liquid disordered and liquid ordered lateral structures, the latter called lipid rafts. For this case, diclofenac-SL molecules were found to be captured by lipid rafts, forming a quasi-regular two-dimensional substructure in them with a “superlattice” parameter of ~ 3.0 nm.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 9\",\"pages\":\"1145 - 1157\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01674-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01674-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
DEER Study of Spatial Arrangement of Spin-Labeled Diclofenac in Lipid Bilayers of Different Composition
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID). Here, we use double electron–electron resonance (DEER, also known as PELDOR) to study the interaction of spin-labeled diclofenac (diclofenac-SL) with three types of model membranes consisting of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and this mixture with the addition of 20 mol% cholesterol. The results suggest that lipid-mediated lateral clustering of diclofenac-SL molecules occurs in all cases. For the POPC bilayer, alternative clustering takes place in two opposite leaflets, with random distribution of the molecules within the clusters. For DOPC/DPPC and DOPC/DPPC/cholesterol bilayers, diclofenac-SL molecules are separated by a distance of at least 1.4 nm. DOPC/DPPC/cholesterol bilayers are known to form nanoscale liquid disordered and liquid ordered lateral structures, the latter called lipid rafts. For this case, diclofenac-SL molecules were found to be captured by lipid rafts, forming a quasi-regular two-dimensional substructure in them with a “superlattice” parameter of ~ 3.0 nm.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.