{"title":"为可移动永久磁共振成像系统设计考虑铁磁效应的梯度线圈","authors":"Jiamin Wu, Zheng Xu, Yanhe Zhu, Yucheng He","doi":"10.1007/s00723-024-01664-w","DOIUrl":null,"url":null,"abstract":"<div><p>The gradient coils represent an indispensable constituent within magnetic resonance imaging systems. Their performance significantly impacts the quality of images, particularly the nonlinearity of the gradient magnetic field. Due to the presence of ferromagnetic materials surrounding the gradient coil in the permanent magnet system, the magnetic field of the gradient coil experiences influence. Consideration must be given to ferromagnetic materials during the design phase. The objective of this study is to design gradient coils that mitigates the impact of ferromagnetic materials on gradient field linearity. In this paper, the original coil structure is formulated utilizing the discrete trajectory method, while introducing mirrored current to elucidate the effects of ferromagnetic material. Through the integration of these two methods, gradient coil structures with excellent linearity are achieved. Ultimately, the optimal gradient coils are fabricated, and computational as well as experimental findings demonstrate concordance between measured nonlinear degree and efficiency of the gradient coils with theoretical calculations in the presence of ferromagnetic materials.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 7","pages":"701 - 717"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Gradient Coils Considering the Ferromagnetic Effect for a Movable Permanent MRI System\",\"authors\":\"Jiamin Wu, Zheng Xu, Yanhe Zhu, Yucheng He\",\"doi\":\"10.1007/s00723-024-01664-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gradient coils represent an indispensable constituent within magnetic resonance imaging systems. Their performance significantly impacts the quality of images, particularly the nonlinearity of the gradient magnetic field. Due to the presence of ferromagnetic materials surrounding the gradient coil in the permanent magnet system, the magnetic field of the gradient coil experiences influence. Consideration must be given to ferromagnetic materials during the design phase. The objective of this study is to design gradient coils that mitigates the impact of ferromagnetic materials on gradient field linearity. In this paper, the original coil structure is formulated utilizing the discrete trajectory method, while introducing mirrored current to elucidate the effects of ferromagnetic material. Through the integration of these two methods, gradient coil structures with excellent linearity are achieved. Ultimately, the optimal gradient coils are fabricated, and computational as well as experimental findings demonstrate concordance between measured nonlinear degree and efficiency of the gradient coils with theoretical calculations in the presence of ferromagnetic materials.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 7\",\"pages\":\"701 - 717\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01664-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01664-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Designing Gradient Coils Considering the Ferromagnetic Effect for a Movable Permanent MRI System
The gradient coils represent an indispensable constituent within magnetic resonance imaging systems. Their performance significantly impacts the quality of images, particularly the nonlinearity of the gradient magnetic field. Due to the presence of ferromagnetic materials surrounding the gradient coil in the permanent magnet system, the magnetic field of the gradient coil experiences influence. Consideration must be given to ferromagnetic materials during the design phase. The objective of this study is to design gradient coils that mitigates the impact of ferromagnetic materials on gradient field linearity. In this paper, the original coil structure is formulated utilizing the discrete trajectory method, while introducing mirrored current to elucidate the effects of ferromagnetic material. Through the integration of these two methods, gradient coil structures with excellent linearity are achieved. Ultimately, the optimal gradient coils are fabricated, and computational as well as experimental findings demonstrate concordance between measured nonlinear degree and efficiency of the gradient coils with theoretical calculations in the presence of ferromagnetic materials.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.