UiO-66-NH2 聚苯并咪唑纳米复合膜对磷酸电解质的吸收和截留分析

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY
Fuel Cells Pub Date : 2024-06-26 DOI:10.1002/fuce.202400045
Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong
{"title":"UiO-66-NH2 聚苯并咪唑纳米复合膜对磷酸电解质的吸收和截留分析","authors":"Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong","doi":"10.1002/fuce.202400045","DOIUrl":null,"url":null,"abstract":"High‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) have a major advantage over low‐temperature fuel cells due to their better tolerance to higher carbon monoxide content in the hydrogen feed, simpler fuel processing, and better heat management. However, a key challenge in the development of HT‐PEMFCs is the potential for acid leaching from phosphoric acid‐doped polybenzimidazole membranes, which can reduce overall fuel cell performance. This study investigates the effect of post‐synthetic modification of the UiO‐66‐NH<jats:sub>2</jats:sub> metal–organic framework (MOF) on the acid electrolyte uptake and retention of MOF/poly(4,4ʹ‐diphenylether‐5,5ʹ‐bibenzimidazole) (OPBI) nanocomposite membranes. Thermogravimetric analysis (TGA) was used to correlate the membrane properties with acid uptake. This work revealed that the presence of MOF with functional groups that can form hydrogen bonds with phosphoric acid molecules was able to alleviate the acid retention in the OPBI membrane with lower acid uptake. TGA demonstrated that the lower bound moisture content in the nanocomposite membranes was correlated to the lower acid uptake. In addition, the thermal stability of the nanocomposite membranes was found to improve.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphoric Acid Electrolyte Uptake and Retention Analysis on UiO‐66‐NH2 Polybenzimidazole Nanocomposite Membranes\",\"authors\":\"Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong\",\"doi\":\"10.1002/fuce.202400045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) have a major advantage over low‐temperature fuel cells due to their better tolerance to higher carbon monoxide content in the hydrogen feed, simpler fuel processing, and better heat management. However, a key challenge in the development of HT‐PEMFCs is the potential for acid leaching from phosphoric acid‐doped polybenzimidazole membranes, which can reduce overall fuel cell performance. This study investigates the effect of post‐synthetic modification of the UiO‐66‐NH<jats:sub>2</jats:sub> metal–organic framework (MOF) on the acid electrolyte uptake and retention of MOF/poly(4,4ʹ‐diphenylether‐5,5ʹ‐bibenzimidazole) (OPBI) nanocomposite membranes. Thermogravimetric analysis (TGA) was used to correlate the membrane properties with acid uptake. This work revealed that the presence of MOF with functional groups that can form hydrogen bonds with phosphoric acid molecules was able to alleviate the acid retention in the OPBI membrane with lower acid uptake. TGA demonstrated that the lower bound moisture content in the nanocomposite membranes was correlated to the lower acid uptake. In addition, the thermal stability of the nanocomposite membranes was found to improve.\",\"PeriodicalId\":12566,\"journal\":{\"name\":\"Fuel Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Cells\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/fuce.202400045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/fuce.202400045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

高温质子交换膜燃料电池(HT-PEMFCs)与低温燃料电池相比具有很大的优势,因为它们能更好地耐受氢原料中较高的一氧化碳含量、更简单的燃料处理和更好的热管理。然而,开发 HT-PEMFCs 的一个主要挑战是掺磷酸的聚苯并咪唑膜可能出现酸浸出,这会降低燃料电池的整体性能。本研究探讨了 UiO-66-NH2 金属有机框架 (MOF) 后合成修饰对 MOF/ 聚(4,4ʹ-二苯醚-5,5ʹ-联苯并咪唑)(OPBI)纳米复合膜的酸电解质吸收和保留的影响。热重分析(TGA)用于将膜特性与酸吸收相关联。研究结果表明,含有能与磷酸分子形成氢键的官能团的 MOF 能够减轻 OPBI 膜的酸滞留,降低酸吸收。热重分析表明,纳米复合膜中较低的结合水分含量与较低的酸吸收率有关。此外,纳米复合膜的热稳定性也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphoric Acid Electrolyte Uptake and Retention Analysis on UiO‐66‐NH2 Polybenzimidazole Nanocomposite Membranes
High‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) have a major advantage over low‐temperature fuel cells due to their better tolerance to higher carbon monoxide content in the hydrogen feed, simpler fuel processing, and better heat management. However, a key challenge in the development of HT‐PEMFCs is the potential for acid leaching from phosphoric acid‐doped polybenzimidazole membranes, which can reduce overall fuel cell performance. This study investigates the effect of post‐synthetic modification of the UiO‐66‐NH2 metal–organic framework (MOF) on the acid electrolyte uptake and retention of MOF/poly(4,4ʹ‐diphenylether‐5,5ʹ‐bibenzimidazole) (OPBI) nanocomposite membranes. Thermogravimetric analysis (TGA) was used to correlate the membrane properties with acid uptake. This work revealed that the presence of MOF with functional groups that can form hydrogen bonds with phosphoric acid molecules was able to alleviate the acid retention in the OPBI membrane with lower acid uptake. TGA demonstrated that the lower bound moisture content in the nanocomposite membranes was correlated to the lower acid uptake. In addition, the thermal stability of the nanocomposite membranes was found to improve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信