Md Nurul Islam, Lee Smith, Sheldon Q. Shi, Yijie Jiang
{"title":"在 3D 打印食品基天然纤维复合材料中定制多尺度孔隙率","authors":"Md Nurul Islam, Lee Smith, Sheldon Q. Shi, Yijie Jiang","doi":"10.1557/s43579-024-00584-x","DOIUrl":null,"url":null,"abstract":"<p>Porous materials are pivotal in emerging fields like tissue engineering, scaffold, and drug delivery due to their distinctive porosity-driven functional properties. This paper describes how to achieve multiscale porosity in food-based composites through a thermally activated gelatinization process of amylopectin molecules coupled with 3D printing. By controlling printing paths, macropores are engineered, while degree of gelatinization governs micro- and nanopores formation. Process-microstructure relationship reveals that longer preheating treatments at higher gelatinization temperatures significantly reduce micro-pore area by over twofold and nanopore surface area by over threefold. These results provide a promising route to fabricate food-based composite with tailorable microstructures.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"17 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring multiscale porosity in 3D printed food-based natural fiber composites\",\"authors\":\"Md Nurul Islam, Lee Smith, Sheldon Q. Shi, Yijie Jiang\",\"doi\":\"10.1557/s43579-024-00584-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porous materials are pivotal in emerging fields like tissue engineering, scaffold, and drug delivery due to their distinctive porosity-driven functional properties. This paper describes how to achieve multiscale porosity in food-based composites through a thermally activated gelatinization process of amylopectin molecules coupled with 3D printing. By controlling printing paths, macropores are engineered, while degree of gelatinization governs micro- and nanopores formation. Process-microstructure relationship reveals that longer preheating treatments at higher gelatinization temperatures significantly reduce micro-pore area by over twofold and nanopore surface area by over threefold. These results provide a promising route to fabricate food-based composite with tailorable microstructures.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00584-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00584-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring multiscale porosity in 3D printed food-based natural fiber composites
Porous materials are pivotal in emerging fields like tissue engineering, scaffold, and drug delivery due to their distinctive porosity-driven functional properties. This paper describes how to achieve multiscale porosity in food-based composites through a thermally activated gelatinization process of amylopectin molecules coupled with 3D printing. By controlling printing paths, macropores are engineered, while degree of gelatinization governs micro- and nanopores formation. Process-microstructure relationship reveals that longer preheating treatments at higher gelatinization temperatures significantly reduce micro-pore area by over twofold and nanopore surface area by over threefold. These results provide a promising route to fabricate food-based composite with tailorable microstructures.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.