L. Zhang, V. R. Besaga, P. Rühl, C. Zou, S. H. Heinemann, Y. Wang, F. Setzpfandt
{"title":"用纠缠光子对探测单层细胞培养物的偏振响应","authors":"L. Zhang, V. R. Besaga, P. Rühl, C. Zou, S. H. Heinemann, Y. Wang, F. Setzpfandt","doi":"10.1002/jbio.202400018","DOIUrl":null,"url":null,"abstract":"This study addresses the critical need for high signal‐to‐noise ratio in optical detection methods for biological sample discrimination under low‐photon‐flux conditions to ensure accuracy without compromising sample integrity. We explore polarization‐based probing, which often excels over intensity modulation when assessing a specimen's morphology. Leveraging non‐classical light sources, our approach capitalizes on sub‐Poissonian photon statistics and quantum correlation‐based measurements. We present a novel, highly sensitive method for probing single‐layer cell cultures using entangled photon pairs. Our approach demonstrates potential for monolayer cell analysis, distinguishing between two types of monolayer cells and their host medium. The experimental results highlight our method's sensitivity, showcasing its potential for biological sample detection using quantum techniques, and paving the way for advanced diagnostic methodologies.<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/jbio202400018-gra-0001.png\" xlink:title=\"image\"/>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"31 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing polarization response of monolayer cell cultures with entangled photon pairs\",\"authors\":\"L. Zhang, V. R. Besaga, P. Rühl, C. Zou, S. H. Heinemann, Y. Wang, F. Setzpfandt\",\"doi\":\"10.1002/jbio.202400018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the critical need for high signal‐to‐noise ratio in optical detection methods for biological sample discrimination under low‐photon‐flux conditions to ensure accuracy without compromising sample integrity. We explore polarization‐based probing, which often excels over intensity modulation when assessing a specimen's morphology. Leveraging non‐classical light sources, our approach capitalizes on sub‐Poissonian photon statistics and quantum correlation‐based measurements. We present a novel, highly sensitive method for probing single‐layer cell cultures using entangled photon pairs. Our approach demonstrates potential for monolayer cell analysis, distinguishing between two types of monolayer cells and their host medium. The experimental results highlight our method's sensitivity, showcasing its potential for biological sample detection using quantum techniques, and paving the way for advanced diagnostic methodologies.<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/jbio202400018-gra-0001.png\\\" xlink:title=\\\"image\\\"/>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400018\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/jbio.202400018","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Probing polarization response of monolayer cell cultures with entangled photon pairs
This study addresses the critical need for high signal‐to‐noise ratio in optical detection methods for biological sample discrimination under low‐photon‐flux conditions to ensure accuracy without compromising sample integrity. We explore polarization‐based probing, which often excels over intensity modulation when assessing a specimen's morphology. Leveraging non‐classical light sources, our approach capitalizes on sub‐Poissonian photon statistics and quantum correlation‐based measurements. We present a novel, highly sensitive method for probing single‐layer cell cultures using entangled photon pairs. Our approach demonstrates potential for monolayer cell analysis, distinguishing between two types of monolayer cells and their host medium. The experimental results highlight our method's sensitivity, showcasing its potential for biological sample detection using quantum techniques, and paving the way for advanced diagnostic methodologies.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.