Chunhua Wang, Yang Ding, Yannan Wang, Zhirun Xie, Zhiyuan Zeng, Xin Li, Yun Hau Ng
{"title":"在水介质中实现太阳能到化学能转换的金属卤化物过氧化物","authors":"Chunhua Wang, Yang Ding, Yannan Wang, Zhirun Xie, Zhiyuan Zeng, Xin Li, Yun Hau Ng","doi":"10.1002/cey2.500","DOIUrl":null,"url":null,"abstract":"Solar-driven energy conversion is a promising technology for a sustainable energy future and environmental remediation, and an efficient catalyst is a key factor. Recently, metal halide perovskites (MHPs) have emerged as promising photocatalysts due to their exceptional photoelectronic properties and low-cost solution processing, enabling successful applications in H<sub>2</sub> evolution, CO<sub>2</sub> reduction, organic synthesis, and pollutant degradation. Despite these successes, the practical applications of MHPs are limited by their water instability. In this review, the recently developed strategies driving MHP-catalyzed reactions in aqueous media are outlined. We first articulate the structures and properties of MHPs, followed by elaborating on the origin of instability in MHPs. Then, we highlight the advances in solar-driven MHP-based catalytic systems in aqueous solutions, focusing on developing external protection strategies and intrinsically water-stable MHP materials. With each approach offering peculiar sets of advantages and challenges, we conclude by outlining potentially promising opportunities and directions for MHP-based photocatalysis research in aqueous conditions moving forward. We anticipate that this timely review will provide some inspiration for the design of MHP-based photocatalysts, manifestly stimulating their applications in aqueous environments for solar-to-chemical energy conversion.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"31 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal halide perovskites for solar-to-chemical energy conversion in aqueous media\",\"authors\":\"Chunhua Wang, Yang Ding, Yannan Wang, Zhirun Xie, Zhiyuan Zeng, Xin Li, Yun Hau Ng\",\"doi\":\"10.1002/cey2.500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-driven energy conversion is a promising technology for a sustainable energy future and environmental remediation, and an efficient catalyst is a key factor. Recently, metal halide perovskites (MHPs) have emerged as promising photocatalysts due to their exceptional photoelectronic properties and low-cost solution processing, enabling successful applications in H<sub>2</sub> evolution, CO<sub>2</sub> reduction, organic synthesis, and pollutant degradation. Despite these successes, the practical applications of MHPs are limited by their water instability. In this review, the recently developed strategies driving MHP-catalyzed reactions in aqueous media are outlined. We first articulate the structures and properties of MHPs, followed by elaborating on the origin of instability in MHPs. Then, we highlight the advances in solar-driven MHP-based catalytic systems in aqueous solutions, focusing on developing external protection strategies and intrinsically water-stable MHP materials. With each approach offering peculiar sets of advantages and challenges, we conclude by outlining potentially promising opportunities and directions for MHP-based photocatalysis research in aqueous conditions moving forward. We anticipate that this timely review will provide some inspiration for the design of MHP-based photocatalysts, manifestly stimulating their applications in aqueous environments for solar-to-chemical energy conversion.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.500\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.500","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Metal halide perovskites for solar-to-chemical energy conversion in aqueous media
Solar-driven energy conversion is a promising technology for a sustainable energy future and environmental remediation, and an efficient catalyst is a key factor. Recently, metal halide perovskites (MHPs) have emerged as promising photocatalysts due to their exceptional photoelectronic properties and low-cost solution processing, enabling successful applications in H2 evolution, CO2 reduction, organic synthesis, and pollutant degradation. Despite these successes, the practical applications of MHPs are limited by their water instability. In this review, the recently developed strategies driving MHP-catalyzed reactions in aqueous media are outlined. We first articulate the structures and properties of MHPs, followed by elaborating on the origin of instability in MHPs. Then, we highlight the advances in solar-driven MHP-based catalytic systems in aqueous solutions, focusing on developing external protection strategies and intrinsically water-stable MHP materials. With each approach offering peculiar sets of advantages and challenges, we conclude by outlining potentially promising opportunities and directions for MHP-based photocatalysis research in aqueous conditions moving forward. We anticipate that this timely review will provide some inspiration for the design of MHP-based photocatalysts, manifestly stimulating their applications in aqueous environments for solar-to-chemical energy conversion.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.