Kabish Wisal, Chun-Wei Chen, Hui Cao, A. Douglas Stone
{"title":"具有多模激励的光纤放大器中的横模不稳定性理论","authors":"Kabish Wisal, Chun-Wei Chen, Hui Cao, A. Douglas Stone","doi":"10.1063/5.0206859","DOIUrl":null,"url":null,"abstract":"Transverse Mode Instability (TMI) that results from dynamic nonlinear thermo-optical scattering is the primary limitation to power scaling in high-power fiber lasers and amplifiers. It has been proposed that TMI can be suppressed by exciting multiple modes in a highly multimode fiber. We derive a semi-analytic frequency-domain theory of the threshold for the onset of TMI in narrowband fiber amplifiers under arbitrary multimode input excitation for general fiber geometries. Our detailed model includes the effect of gain saturation, pump depletion, and mode-dependent gain. We show that TMI results from the exponential growth of noise in all the modes at downshifted frequencies due to the thermo-optical coupling. The noise growth rate in each mode is given by the sum of signal powers in various modes weighted by pairwise thermo-optical coupling coefficients. We calculate thermo-optical coupling coefficients for all ∼104 pairs of modes in a standard circular multimode fiber and show that modes with large transverse spatial frequency mismatch are weakly coupled, resulting in a banded coupling matrix. This short-range behavior is due to the diffusive nature of the heat propagation, which mediates the coupling and leads to a lower noise growth rate upon multimode excitation compared to a single mode, resulting in significant TMI suppression. We find that the TMI threshold scales linearly with the number of modes that are excited asymptotically, leading to roughly an order of magnitude increase in the TMI threshold in an 82-mode fiber amplifier.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"29 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of transverse mode instability in fiber amplifiers with multimode excitations\",\"authors\":\"Kabish Wisal, Chun-Wei Chen, Hui Cao, A. Douglas Stone\",\"doi\":\"10.1063/5.0206859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transverse Mode Instability (TMI) that results from dynamic nonlinear thermo-optical scattering is the primary limitation to power scaling in high-power fiber lasers and amplifiers. It has been proposed that TMI can be suppressed by exciting multiple modes in a highly multimode fiber. We derive a semi-analytic frequency-domain theory of the threshold for the onset of TMI in narrowband fiber amplifiers under arbitrary multimode input excitation for general fiber geometries. Our detailed model includes the effect of gain saturation, pump depletion, and mode-dependent gain. We show that TMI results from the exponential growth of noise in all the modes at downshifted frequencies due to the thermo-optical coupling. The noise growth rate in each mode is given by the sum of signal powers in various modes weighted by pairwise thermo-optical coupling coefficients. We calculate thermo-optical coupling coefficients for all ∼104 pairs of modes in a standard circular multimode fiber and show that modes with large transverse spatial frequency mismatch are weakly coupled, resulting in a banded coupling matrix. This short-range behavior is due to the diffusive nature of the heat propagation, which mediates the coupling and leads to a lower noise growth rate upon multimode excitation compared to a single mode, resulting in significant TMI suppression. We find that the TMI threshold scales linearly with the number of modes that are excited asymptotically, leading to roughly an order of magnitude increase in the TMI threshold in an 82-mode fiber amplifier.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0206859\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0206859","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Theory of transverse mode instability in fiber amplifiers with multimode excitations
Transverse Mode Instability (TMI) that results from dynamic nonlinear thermo-optical scattering is the primary limitation to power scaling in high-power fiber lasers and amplifiers. It has been proposed that TMI can be suppressed by exciting multiple modes in a highly multimode fiber. We derive a semi-analytic frequency-domain theory of the threshold for the onset of TMI in narrowband fiber amplifiers under arbitrary multimode input excitation for general fiber geometries. Our detailed model includes the effect of gain saturation, pump depletion, and mode-dependent gain. We show that TMI results from the exponential growth of noise in all the modes at downshifted frequencies due to the thermo-optical coupling. The noise growth rate in each mode is given by the sum of signal powers in various modes weighted by pairwise thermo-optical coupling coefficients. We calculate thermo-optical coupling coefficients for all ∼104 pairs of modes in a standard circular multimode fiber and show that modes with large transverse spatial frequency mismatch are weakly coupled, resulting in a banded coupling matrix. This short-range behavior is due to the diffusive nature of the heat propagation, which mediates the coupling and leads to a lower noise growth rate upon multimode excitation compared to a single mode, resulting in significant TMI suppression. We find that the TMI threshold scales linearly with the number of modes that are excited asymptotically, leading to roughly an order of magnitude increase in the TMI threshold in an 82-mode fiber amplifier.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.