{"title":"由普通导数算子推导出的一些Δ常数","authors":"Jin Wang, Ruiqi Ruan","doi":"10.1090/proc/16817","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 1 Baseline psi 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_1\\psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 6 Baseline phi 5\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_6\\phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some 𝑞-identities derived by the ordinary derivative operator\",\"authors\":\"Jin Wang, Ruiqi Ruan\",\"doi\":\"10.1090/proc/16817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript 1 Baseline psi 1\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_1\\\\psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript 6 Baseline phi 5\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_6\\\\phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some 𝑞-identities derived by the ordinary derivative operator
In this paper, we investigate applications of the ordinary derivative operator, instead of the qq-derivative operator, to the theory of qq-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the qq-binomial theorem, Ramanujan’s 1ψ1{}_1\psi _1 formula, the quintuple product identity, Gasper’s qq-Clausen product formula, and Rogers’ 6ϕ5{}_6\phi _5 formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.