由普通导数算子推导出的一些Δ常数

IF 0.8 3区 数学 Q2 MATHEMATICS
Jin Wang, Ruiqi Ruan
{"title":"由普通导数算子推导出的一些Δ常数","authors":"Jin Wang, Ruiqi Ruan","doi":"10.1090/proc/16817","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 1 Baseline psi 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_1\\psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 6 Baseline phi 5\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_6\\phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"56 73 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some 𝑞-identities derived by the ordinary derivative operator\",\"authors\":\"Jin Wang, Ruiqi Ruan\",\"doi\":\"10.1090/proc/16817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript 1 Baseline psi 1\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_1\\\\psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Subscript 6 Baseline phi 5\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">{}_6\\\\phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"56 73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16817\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了普通导数算子而非 q q -导数算子在 q q -数列理论中的应用。作为主要成果,我们建立了许多新的求和与变换公式,它们与一些著名公式密切相关,如 q q -二项式定理、Ramanujan 的 1 ψ 1 {}_1\psi _1 公式、五次乘积同一性、Gasper 的 q q -Clausen 乘积公式和 Rogers 的 6 ϕ 5 {}_6\phi _5 公式等。在这些结果中,有罗杰斯-拉马努扬特性的有限形式,也有爱森斯坦兰伯特级数定理的捷径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some 𝑞-identities derived by the ordinary derivative operator

In this paper, we investigate applications of the ordinary derivative operator, instead of the q q -derivative operator, to the theory of q q -series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the q q -binomial theorem, Ramanujan’s 1 ψ 1 {}_1\psi _1 formula, the quintuple product identity, Gasper’s q q -Clausen product formula, and Rogers’ 6 ϕ 5 {}_6\phi _5 formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信