{"title":"关于斯托尔兹在环状情况下的一个猜想","authors":"Michael Wiemeler","doi":"10.1090/proc/16823","DOIUrl":null,"url":null,"abstract":"<p>In 1996 Stolz [Math. Ann. 304 (1996), pp. 785–800] conjectured that a string manifold with positive Ricci curvature has vanishing Witten genus. Here we prove this conjecture for toric string Fano manifolds and for string torus manifolds admitting invariant metrics of non-negative sectional curvature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a conjecture of Stolz in the toric case\",\"authors\":\"Michael Wiemeler\",\"doi\":\"10.1090/proc/16823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1996 Stolz [Math. Ann. 304 (1996), pp. 785–800] conjectured that a string manifold with positive Ricci curvature has vanishing Witten genus. Here we prove this conjecture for toric string Fano manifolds and for string torus manifolds admitting invariant metrics of non-negative sectional curvature.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
1996 年,Stolz [Math. Ann. 304 (1996), pp.在此,我们证明了环状弦法诺流形和允许非负截面曲率不变度量的弦环流形的这一猜想。
In 1996 Stolz [Math. Ann. 304 (1996), pp. 785–800] conjectured that a string manifold with positive Ricci curvature has vanishing Witten genus. Here we prove this conjecture for toric string Fano manifolds and for string torus manifolds admitting invariant metrics of non-negative sectional curvature.