{"title":"模块化聚酮酸酯合成酶立体选择性的生物信息学预测:酮还原酶结构域序列基序的更新","authors":"Changjun Xiang, Shunyu Yao, Ruoyu Wang, Lihan Zhang","doi":"10.3762/bjoc.20.131","DOIUrl":null,"url":null,"abstract":"<p><font size='+1'><b>Abstract</b></font></p>\n<p>Polyketides are a major class of natural products, including bioactive medicines such as erythromycin and rapamycin. They are often rich in stereocenters biosynthesized by the ketoreductase (KR) domain within the polyketide synthase (PKS) assembly line. Previous studies have identified conserved motifs in KR sequences that enable the bioinformatic prediction of product stereochemistry. However, the reliability and applicability of these prediction methods have not been thoroughly assessed. In this study, we conducted a comprehensive bioinformatic analysis of 1,762 KR sequences from <i>cis</i>-AT PKSs to reevaluate the residues involved in conferring stereoselectivity. Our findings indicate that the previously identified fingerprint motifs remain valid for KRs in β-modules from actinobacteria, but their reliability diminishes for KRs from other module types or taxonomic origins. Additionally, we have identified several new motifs that exhibit a strong correlation with the stereochemical outcomes of KRs. These updated fingerprint motifs for stereochemical prediction not only enhance our understanding of the enzymatic mechanisms governing stereocontrol but also facilitate accurate stereochemical prediction and genome mining of polyketides derived from modular <i>cis</i>-AT PKSs.</p>\n<p align='center'><img src='https://www.beilstein-journals.org/bjoc/content/figures/1860-5397-20-131-graphical-abstract.png?max-width=550' border='0'/></p>\n<p><i>Beilstein J. Org. Chem.</i> <b>2024,</b> <i>20,</i> 1476–1485. doi:10.3762/bjoc.20.131</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain\",\"authors\":\"Changjun Xiang, Shunyu Yao, Ruoyu Wang, Lihan Zhang\",\"doi\":\"10.3762/bjoc.20.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><font size='+1'><b>Abstract</b></font></p>\\n<p>Polyketides are a major class of natural products, including bioactive medicines such as erythromycin and rapamycin. They are often rich in stereocenters biosynthesized by the ketoreductase (KR) domain within the polyketide synthase (PKS) assembly line. Previous studies have identified conserved motifs in KR sequences that enable the bioinformatic prediction of product stereochemistry. However, the reliability and applicability of these prediction methods have not been thoroughly assessed. In this study, we conducted a comprehensive bioinformatic analysis of 1,762 KR sequences from <i>cis</i>-AT PKSs to reevaluate the residues involved in conferring stereoselectivity. Our findings indicate that the previously identified fingerprint motifs remain valid for KRs in β-modules from actinobacteria, but their reliability diminishes for KRs from other module types or taxonomic origins. Additionally, we have identified several new motifs that exhibit a strong correlation with the stereochemical outcomes of KRs. These updated fingerprint motifs for stereochemical prediction not only enhance our understanding of the enzymatic mechanisms governing stereocontrol but also facilitate accurate stereochemical prediction and genome mining of polyketides derived from modular <i>cis</i>-AT PKSs.</p>\\n<p align='center'><img src='https://www.beilstein-journals.org/bjoc/content/figures/1860-5397-20-131-graphical-abstract.png?max-width=550' border='0'/></p>\\n<p><i>Beilstein J. Org. Chem.</i> <b>2024,</b> <i>20,</i> 1476–1485. doi:10.3762/bjoc.20.131</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.20.131\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.20.131","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain
Abstract
Polyketides are a major class of natural products, including bioactive medicines such as erythromycin and rapamycin. They are often rich in stereocenters biosynthesized by the ketoreductase (KR) domain within the polyketide synthase (PKS) assembly line. Previous studies have identified conserved motifs in KR sequences that enable the bioinformatic prediction of product stereochemistry. However, the reliability and applicability of these prediction methods have not been thoroughly assessed. In this study, we conducted a comprehensive bioinformatic analysis of 1,762 KR sequences from cis-AT PKSs to reevaluate the residues involved in conferring stereoselectivity. Our findings indicate that the previously identified fingerprint motifs remain valid for KRs in β-modules from actinobacteria, but their reliability diminishes for KRs from other module types or taxonomic origins. Additionally, we have identified several new motifs that exhibit a strong correlation with the stereochemical outcomes of KRs. These updated fingerprint motifs for stereochemical prediction not only enhance our understanding of the enzymatic mechanisms governing stereocontrol but also facilitate accurate stereochemical prediction and genome mining of polyketides derived from modular cis-AT PKSs.
Beilstein J. Org. Chem.2024,20, 1476–1485. doi:10.3762/bjoc.20.131
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.