将 N-CoSe/CoSe2-C@Cu 分层结构作为钾离子电池的集流集成阳极

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zi-Jie Mu, Yan-Jun Gao, Wen-Shuai Dong, Zong-You Li, Qing-Yi Song, Han-Jiao Huang, Li-Dong Xing, Jian-Guo Zhang, Wei Wang, Qi-Yao Yu
{"title":"将 N-CoSe/CoSe2-C@Cu 分层结构作为钾离子电池的集流集成阳极","authors":"Zi-Jie Mu, Yan-Jun Gao, Wen-Shuai Dong, Zong-You Li, Qing-Yi Song, Han-Jiao Huang, Li-Dong Xing, Jian-Guo Zhang, Wei Wang, Qi-Yao Yu","doi":"10.1007/s12598-024-02788-5","DOIUrl":null,"url":null,"abstract":"<p>The highly reversible insertion/extraction of large-radius K<sup>+</sup> into electrode materials remains a tough goal, especially for conversion-type materials. Herein, we design a current collector-integrated electrode (N–CoSe/CoSe<sub>2</sub>–C@Cu) as an advanced anode for potassium-ion battery (PIBs). The conductive CoSe/CoSe<sub>2</sub> heterojunction with rich Se vacancy defects, conductive sp<sup>2</sup> N-doped carbon layer, and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability. Consequently, the well-designed N–CoSe/CoSe<sub>2</sub>–C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity (325.1 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> after 200 cycles), an exceptional rate capability (223.5 mAh·g<sup>−1</sup> at 2000 mA·g<sup>−1</sup>), and an extraordinary long-term cycle stability (a capacity fading of only 0.019% per cycle over 1200 cycles at 2000 mA·g<sup>−1</sup>). Impressively, ex situ scanning electron microscopy (SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N–CoSe/CoSe<sub>2</sub>–C@Cu heterostructure, which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A N–CoSe/CoSe2–C@Cu hierarchical architecture as a current collector-integrated anode for potassium-ion batteries\",\"authors\":\"Zi-Jie Mu, Yan-Jun Gao, Wen-Shuai Dong, Zong-You Li, Qing-Yi Song, Han-Jiao Huang, Li-Dong Xing, Jian-Guo Zhang, Wei Wang, Qi-Yao Yu\",\"doi\":\"10.1007/s12598-024-02788-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The highly reversible insertion/extraction of large-radius K<sup>+</sup> into electrode materials remains a tough goal, especially for conversion-type materials. Herein, we design a current collector-integrated electrode (N–CoSe/CoSe<sub>2</sub>–C@Cu) as an advanced anode for potassium-ion battery (PIBs). The conductive CoSe/CoSe<sub>2</sub> heterojunction with rich Se vacancy defects, conductive sp<sup>2</sup> N-doped carbon layer, and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability. Consequently, the well-designed N–CoSe/CoSe<sub>2</sub>–C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity (325.1 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> after 200 cycles), an exceptional rate capability (223.5 mAh·g<sup>−1</sup> at 2000 mA·g<sup>−1</sup>), and an extraordinary long-term cycle stability (a capacity fading of only 0.019% per cycle over 1200 cycles at 2000 mA·g<sup>−1</sup>). Impressively, ex situ scanning electron microscopy (SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N–CoSe/CoSe<sub>2</sub>–C@Cu heterostructure, which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02788-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02788-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将大半径 K+ 高度可逆地插入/提取到电极材料中仍然是一个艰巨的目标,尤其是对于转换型材料而言。在此,我们设计了一种集流集成电极(N-CoSe/CoSe2-C@Cu),作为钾离子电池(PIBs)的先进阳极。具有丰富Se空位缺陷的导电CoSe/CoSe2异质结、导电的sp2 N掺杂碳层以及弹性铜箔基体可大大加速电子转移并增强结构稳定性。因此,精心设计的 N-CoSe/CoSe2-C@Cu 集流集成电极具有更高的钾存储性能,包括高容量(200 次循环后,在 0.1 A-g-1 条件下为 325.1 mAh-g-1)、卓越的速率能力(在 2000 mA-g-1 条件下为 223.5 mAh-g-1)和非凡的长期循环稳定性(在 2000 mA-g-1 条件下循环 1200 次,每次循环的容量衰减仅为 0.019%)。令人印象深刻的是,原位扫描电子显微镜(SEM)表征证明,铜箔的弹性结构与巧妙设计的 N-CoSe/CoSe2-C@Cu 异质结构融为一体,从而缓冲了结构和体积的变形,大大延长了钾/脱钾过程中的循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A N–CoSe/CoSe2–C@Cu hierarchical architecture as a current collector-integrated anode for potassium-ion batteries

A N–CoSe/CoSe2–C@Cu hierarchical architecture as a current collector-integrated anode for potassium-ion batteries

The highly reversible insertion/extraction of large-radius K+ into electrode materials remains a tough goal, especially for conversion-type materials. Herein, we design a current collector-integrated electrode (N–CoSe/CoSe2–C@Cu) as an advanced anode for potassium-ion battery (PIBs). The conductive CoSe/CoSe2 heterojunction with rich Se vacancy defects, conductive sp2 N-doped carbon layer, and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability. Consequently, the well-designed N–CoSe/CoSe2–C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity (325.1 mAh·g−1 at 0.1 A·g−1 after 200 cycles), an exceptional rate capability (223.5 mAh·g−1 at 2000 mA·g−1), and an extraordinary long-term cycle stability (a capacity fading of only 0.019% per cycle over 1200 cycles at 2000 mA·g−1). Impressively, ex situ scanning electron microscopy (SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N–CoSe/CoSe2–C@Cu heterostructure, which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信