制备用于水下排水管道修复的卡旦醇基固化剂

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2024-06-29 DOI:10.1515/epoly-2023-0190
Yu Li, Guoqing Wang, Yali Guo, Ning Fang, Jingxiang Li, Zheng Li, Junhan Li
{"title":"制备用于水下排水管道修复的卡旦醇基固化剂","authors":"Yu Li, Guoqing Wang, Yali Guo, Ning Fang, Jingxiang Li, Zheng Li, Junhan Li","doi":"10.1515/epoly-2023-0190","DOIUrl":null,"url":null,"abstract":"The underwater curing agents have demonstrated promising potential in various applications, especially in underwater repair engineering, yet have proven considerable challenging. Here, we report a cardanol-based curing agent for epoxy resin that achieves robust adhesion to steel and concrete substrates both in air and underwater. Cardanol, paraformaldehyde, and <jats:italic>m</jats:italic>-phenyldimethylamine are selected as the polymeric monomers to synthesize curing agent by Mannich reaction in the absence of chemical cross-linker agents. The coating is completely cured within 46 ± 1 min in air and 54 ± 2 min under water with an adhesion of 0 or 1 and a hardness of 5H. The impact strength, shear strength, and tensile strength of coating on underwater concrete were 9.58 ± 0.41 kJ·m<jats:sup>−2</jats:sup>, 13.1 ± 0.3, and 10.5 ± 0.2 MPa, respectively, demonstrating exceptional flexibility and mechanical strength as well as favorable hydrophobicity. This work paves the way for the rehabilitation of underwater drainage network for urban infrastructure and water conservancy projects.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of cardanol-based curing agent for underwater drainage pipeline repairs\",\"authors\":\"Yu Li, Guoqing Wang, Yali Guo, Ning Fang, Jingxiang Li, Zheng Li, Junhan Li\",\"doi\":\"10.1515/epoly-2023-0190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The underwater curing agents have demonstrated promising potential in various applications, especially in underwater repair engineering, yet have proven considerable challenging. Here, we report a cardanol-based curing agent for epoxy resin that achieves robust adhesion to steel and concrete substrates both in air and underwater. Cardanol, paraformaldehyde, and <jats:italic>m</jats:italic>-phenyldimethylamine are selected as the polymeric monomers to synthesize curing agent by Mannich reaction in the absence of chemical cross-linker agents. The coating is completely cured within 46 ± 1 min in air and 54 ± 2 min under water with an adhesion of 0 or 1 and a hardness of 5H. The impact strength, shear strength, and tensile strength of coating on underwater concrete were 9.58 ± 0.41 kJ·m<jats:sup>−2</jats:sup>, 13.1 ± 0.3, and 10.5 ± 0.2 MPa, respectively, demonstrating exceptional flexibility and mechanical strength as well as favorable hydrophobicity. This work paves the way for the rehabilitation of underwater drainage network for urban infrastructure and water conservancy projects.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0190\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0190","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

水下固化剂在各种应用中,尤其是在水下修复工程中,已经显示出了巨大的潜力,但事实证明其具有相当大的挑战性。在此,我们报告了一种基于卡旦醇的环氧树脂固化剂,这种固化剂在空气中和水下都能实现与钢材和混凝土基材的牢固粘合。在没有化学交联剂的情况下,我们选择了卡旦醇、多聚甲醛和间苯二甲胺作为聚合物单体,通过曼尼希反应合成固化剂。涂层在空气中 46 ± 1 分钟内完全固化,在水中 54 ± 2 分钟内完全固化,附着力为 0 或 1,硬度为 5H。涂层在水下混凝土上的冲击强度、剪切强度和拉伸强度分别为 9.58 ± 0.41 kJ-m-2、13.1 ± 0.3 和 10.5 ± 0.2 MPa,显示出优异的柔韧性和机械强度以及良好的疏水性。这项工作为修复城市基础设施和水利工程的水下排水管网铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of cardanol-based curing agent for underwater drainage pipeline repairs
The underwater curing agents have demonstrated promising potential in various applications, especially in underwater repair engineering, yet have proven considerable challenging. Here, we report a cardanol-based curing agent for epoxy resin that achieves robust adhesion to steel and concrete substrates both in air and underwater. Cardanol, paraformaldehyde, and m-phenyldimethylamine are selected as the polymeric monomers to synthesize curing agent by Mannich reaction in the absence of chemical cross-linker agents. The coating is completely cured within 46 ± 1 min in air and 54 ± 2 min under water with an adhesion of 0 or 1 and a hardness of 5H. The impact strength, shear strength, and tensile strength of coating on underwater concrete were 9.58 ± 0.41 kJ·m−2, 13.1 ± 0.3, and 10.5 ± 0.2 MPa, respectively, demonstrating exceptional flexibility and mechanical strength as well as favorable hydrophobicity. This work paves the way for the rehabilitation of underwater drainage network for urban infrastructure and water conservancy projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信