具有临界增长的哈密尔顿型系统的周期解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuxia Guo, Shengyu Wu, Shusen Yan
{"title":"具有临界增长的哈密尔顿型系统的周期解","authors":"Yuxia Guo, Shengyu Wu, Shusen Yan","doi":"10.1007/s00526-024-02770-0","DOIUrl":null,"url":null,"abstract":"<p>We consider an elliptic system of Hamiltonian type in a strip in <span>\\({\\mathbb {R}}^N\\)</span>, satisfying the periodic boundary condition for the first <i>k</i> variables. In the superlinear case with critical growth, we prove the existence of a single bubbling solution for the system under an optimal condition on <i>k</i>. The novelty of the paper is that all the estimates needed in the proof of the existence result can be obtained once the Green’s function of the Laplacian operator in a strip with periodic boundary conditions is found.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic solution for Hamiltonian type systems with critical growth\",\"authors\":\"Yuxia Guo, Shengyu Wu, Shusen Yan\",\"doi\":\"10.1007/s00526-024-02770-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider an elliptic system of Hamiltonian type in a strip in <span>\\\\({\\\\mathbb {R}}^N\\\\)</span>, satisfying the periodic boundary condition for the first <i>k</i> variables. In the superlinear case with critical growth, we prove the existence of a single bubbling solution for the system under an optimal condition on <i>k</i>. The novelty of the paper is that all the estimates needed in the proof of the existence result can be obtained once the Green’s function of the Laplacian operator in a strip with periodic boundary conditions is found.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02770-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02770-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在\({\mathbb {R}}^N\) 带中的哈密顿型椭圆系统,该系统满足前 k 个变量的周期性边界条件。在临界增长的超线性情况下,我们证明了在 k 的最优条件下该系统存在一个单一的冒泡解。本文的新颖之处在于,一旦找到了具有周期性边界条件的条带中拉普拉斯算子的格林函数,就可以得到证明存在结果所需的所有估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic solution for Hamiltonian type systems with critical growth

We consider an elliptic system of Hamiltonian type in a strip in \({\mathbb {R}}^N\), satisfying the periodic boundary condition for the first k variables. In the superlinear case with critical growth, we prove the existence of a single bubbling solution for the system under an optimal condition on k. The novelty of the paper is that all the estimates needed in the proof of the existence result can be obtained once the Green’s function of the Laplacian operator in a strip with periodic boundary conditions is found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信